Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Qualcomm Technologies HIDMA DMA engine low level code
*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*/
#include <linux/dmaengine.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <linux/iopoll.h>
#include <linux/kfifo.h>
#include <linux/bitops.h>
#include "hidma.h"
#define HIDMA_EVRE_SIZE 16 /* each EVRE is 16 bytes */
#define HIDMA_TRCA_CTRLSTS_REG 0x000
#define HIDMA_TRCA_RING_LOW_REG 0x008
#define HIDMA_TRCA_RING_HIGH_REG 0x00C
#define HIDMA_TRCA_RING_LEN_REG 0x010
#define HIDMA_TRCA_DOORBELL_REG 0x400
#define HIDMA_EVCA_CTRLSTS_REG 0x000
#define HIDMA_EVCA_INTCTRL_REG 0x004
#define HIDMA_EVCA_RING_LOW_REG 0x008
#define HIDMA_EVCA_RING_HIGH_REG 0x00C
#define HIDMA_EVCA_RING_LEN_REG 0x010
#define HIDMA_EVCA_WRITE_PTR_REG 0x020
#define HIDMA_EVCA_DOORBELL_REG 0x400
#define HIDMA_EVCA_IRQ_STAT_REG 0x100
#define HIDMA_EVCA_IRQ_CLR_REG 0x108
#define HIDMA_EVCA_IRQ_EN_REG 0x110
#define HIDMA_EVRE_CFG_IDX 0
#define HIDMA_EVRE_ERRINFO_BIT_POS 24
#define HIDMA_EVRE_CODE_BIT_POS 28
#define HIDMA_EVRE_ERRINFO_MASK GENMASK(3, 0)
#define HIDMA_EVRE_CODE_MASK GENMASK(3, 0)
#define HIDMA_CH_CONTROL_MASK GENMASK(7, 0)
#define HIDMA_CH_STATE_MASK GENMASK(7, 0)
#define HIDMA_CH_STATE_BIT_POS 0x8
#define HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS 0
#define HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS 1
#define HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS 9
#define HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS 10
#define HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS 11
#define HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS 14
#define ENABLE_IRQS (BIT(HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS) | \
<------><------> BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \
<------><------> BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \
<------><------> BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \
<------><------> BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS) | \
<------><------> BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS))
#define HIDMA_INCREMENT_ITERATOR(iter, size, ring_size) \
do { \
<------>iter += size; \
<------>if (iter >= ring_size) \
<------><------>iter -= ring_size; \
} while (0)
#define HIDMA_CH_STATE(val) \
<------>((val >> HIDMA_CH_STATE_BIT_POS) & HIDMA_CH_STATE_MASK)
#define HIDMA_ERR_INT_MASK \
<------>(BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS) | \
<------> BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \
<------> BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \
<------> BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \
<------> BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS))
enum ch_command {
<------>HIDMA_CH_DISABLE = 0,
<------>HIDMA_CH_ENABLE = 1,
<------>HIDMA_CH_SUSPEND = 2,
<------>HIDMA_CH_RESET = 9,
};
enum ch_state {
<------>HIDMA_CH_DISABLED = 0,
<------>HIDMA_CH_ENABLED = 1,
<------>HIDMA_CH_RUNNING = 2,
<------>HIDMA_CH_SUSPENDED = 3,
<------>HIDMA_CH_STOPPED = 4,
};
enum err_code {
<------>HIDMA_EVRE_STATUS_COMPLETE = 1,
<------>HIDMA_EVRE_STATUS_ERROR = 4,
};
static int hidma_is_chan_enabled(int state)
{
<------>switch (state) {
<------>case HIDMA_CH_ENABLED:
<------>case HIDMA_CH_RUNNING:
<------><------>return true;
<------>default:
<------><------>return false;
<------>}
}
void hidma_ll_free(struct hidma_lldev *lldev, u32 tre_ch)
{
<------>struct hidma_tre *tre;
<------>if (tre_ch >= lldev->nr_tres) {
<------><------>dev_err(lldev->dev, "invalid TRE number in free:%d", tre_ch);
<------><------>return;
<------>}
<------>tre = &lldev->trepool[tre_ch];
<------>if (atomic_read(&tre->allocated) != true) {
<------><------>dev_err(lldev->dev, "trying to free an unused TRE:%d", tre_ch);
<------><------>return;
<------>}
<------>atomic_set(&tre->allocated, 0);
}
int hidma_ll_request(struct hidma_lldev *lldev, u32 sig, const char *dev_name,
<------><------> void (*callback)(void *data), void *data, u32 *tre_ch)
{
<------>unsigned int i;
<------>struct hidma_tre *tre;
<------>u32 *tre_local;
<------>if (!tre_ch || !lldev)
<------><------>return -EINVAL;
<------>/* need to have at least one empty spot in the queue */
<------>for (i = 0; i < lldev->nr_tres - 1; i++) {
<------><------>if (atomic_add_unless(&lldev->trepool[i].allocated, 1, 1))
<------><------><------>break;
<------>}
<------>if (i == (lldev->nr_tres - 1))
<------><------>return -ENOMEM;
<------>tre = &lldev->trepool[i];
<------>tre->dma_sig = sig;
<------>tre->dev_name = dev_name;
<------>tre->callback = callback;
<------>tre->data = data;
<------>tre->idx = i;
<------>tre->status = 0;
<------>tre->queued = 0;
<------>tre->err_code = 0;
<------>tre->err_info = 0;
<------>tre->lldev = lldev;
<------>tre_local = &tre->tre_local[0];
<------>tre_local[HIDMA_TRE_CFG_IDX] = (lldev->chidx & 0xFF) << 8;
<------>tre_local[HIDMA_TRE_CFG_IDX] |= BIT(16); /* set IEOB */
<------>*tre_ch = i;
<------>if (callback)
<------><------>callback(data);
<------>return 0;
}
/*
* Multiple TREs may be queued and waiting in the pending queue.
*/
static void hidma_ll_tre_complete(struct tasklet_struct *t)
{
<------>struct hidma_lldev *lldev = from_tasklet(lldev, t, task);
<------>struct hidma_tre *tre;
<------>while (kfifo_out(&lldev->handoff_fifo, &tre, 1)) {
<------><------>/* call the user if it has been read by the hardware */
<------><------>if (tre->callback)
<------><------><------>tre->callback(tre->data);
<------>}
}
static int hidma_post_completed(struct hidma_lldev *lldev, u8 err_info,
<------><------><------><------>u8 err_code)
{
<------>struct hidma_tre *tre;
<------>unsigned long flags;
<------>u32 tre_iterator;
<------>spin_lock_irqsave(&lldev->lock, flags);
<------>tre_iterator = lldev->tre_processed_off;
<------>tre = lldev->pending_tre_list[tre_iterator / HIDMA_TRE_SIZE];
<------>if (!tre) {
<------><------>spin_unlock_irqrestore(&lldev->lock, flags);
<------><------>dev_warn(lldev->dev, "tre_index [%d] and tre out of sync\n",
<------><------><------> tre_iterator / HIDMA_TRE_SIZE);
<------><------>return -EINVAL;
<------>}
<------>lldev->pending_tre_list[tre->tre_index] = NULL;
<------>/*
<------> * Keep track of pending TREs that SW is expecting to receive
<------> * from HW. We got one now. Decrement our counter.
<------> */
<------>if (atomic_dec_return(&lldev->pending_tre_count) < 0) {
<------><------>dev_warn(lldev->dev, "tre count mismatch on completion");
<------><------>atomic_set(&lldev->pending_tre_count, 0);
<------>}
<------>HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
<------><------><------><------> lldev->tre_ring_size);
<------>lldev->tre_processed_off = tre_iterator;
<------>spin_unlock_irqrestore(&lldev->lock, flags);
<------>tre->err_info = err_info;
<------>tre->err_code = err_code;
<------>tre->queued = 0;
<------>kfifo_put(&lldev->handoff_fifo, tre);
<------>tasklet_schedule(&lldev->task);
<------>return 0;
}
/*
* Called to handle the interrupt for the channel.
* Return a positive number if TRE or EVRE were consumed on this run.
* Return a positive number if there are pending TREs or EVREs.
* Return 0 if there is nothing to consume or no pending TREs/EVREs found.
*/
static int hidma_handle_tre_completion(struct hidma_lldev *lldev)
{
<------>u32 evre_ring_size = lldev->evre_ring_size;
<------>u32 err_info, err_code, evre_write_off;
<------>u32 evre_iterator;
<------>u32 num_completed = 0;
<------>evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
<------>evre_iterator = lldev->evre_processed_off;
<------>if ((evre_write_off > evre_ring_size) ||
<------> (evre_write_off % HIDMA_EVRE_SIZE)) {
<------><------>dev_err(lldev->dev, "HW reports invalid EVRE write offset\n");
<------><------>return 0;
<------>}
<------>/*
<------> * By the time control reaches here the number of EVREs and TREs
<------> * may not match. Only consume the ones that hardware told us.
<------> */
<------>while ((evre_iterator != evre_write_off)) {
<------><------>u32 *current_evre = lldev->evre_ring + evre_iterator;
<------><------>u32 cfg;
<------><------>cfg = current_evre[HIDMA_EVRE_CFG_IDX];
<------><------>err_info = cfg >> HIDMA_EVRE_ERRINFO_BIT_POS;
<------><------>err_info &= HIDMA_EVRE_ERRINFO_MASK;
<------><------>err_code =
<------><------> (cfg >> HIDMA_EVRE_CODE_BIT_POS) & HIDMA_EVRE_CODE_MASK;
<------><------>if (hidma_post_completed(lldev, err_info, err_code))
<------><------><------>break;
<------><------>HIDMA_INCREMENT_ITERATOR(evre_iterator, HIDMA_EVRE_SIZE,
<------><------><------><------><------> evre_ring_size);
<------><------>/*
<------><------> * Read the new event descriptor written by the HW.
<------><------> * As we are processing the delivered events, other events
<------><------> * get queued to the SW for processing.
<------><------> */
<------><------>evre_write_off =
<------><------> readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
<------><------>num_completed++;
<------><------>/*
<------><------> * An error interrupt might have arrived while we are processing
<------><------> * the completed interrupt.
<------><------> */
<------><------>if (!hidma_ll_isenabled(lldev))
<------><------><------>break;
<------>}
<------>if (num_completed) {
<------><------>u32 evre_read_off = (lldev->evre_processed_off +
<------><------><------><------> HIDMA_EVRE_SIZE * num_completed);
<------><------>evre_read_off = evre_read_off % evre_ring_size;
<------><------>writel(evre_read_off, lldev->evca + HIDMA_EVCA_DOORBELL_REG);
<------><------>/* record the last processed tre offset */
<------><------>lldev->evre_processed_off = evre_read_off;
<------>}
<------>return num_completed;
}
void hidma_cleanup_pending_tre(struct hidma_lldev *lldev, u8 err_info,
<------><------><------> u8 err_code)
{
<------>while (atomic_read(&lldev->pending_tre_count)) {
<------><------>if (hidma_post_completed(lldev, err_info, err_code))
<------><------><------>break;
<------>}
}
static int hidma_ll_reset(struct hidma_lldev *lldev)
{
<------>u32 val;
<------>int ret;
<------>val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
<------>val &= ~(HIDMA_CH_CONTROL_MASK << 16);
<------>val |= HIDMA_CH_RESET << 16;
<------>writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
<------>/*
<------> * Delay 10ms after reset to allow DMA logic to quiesce.
<------> * Do a polled read up to 1ms and 10ms maximum.
<------> */
<------>ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
<------><------><------><------> HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
<------><------><------><------> 1000, 10000);
<------>if (ret) {
<------><------>dev_err(lldev->dev, "transfer channel did not reset\n");
<------><------>return ret;
<------>}
<------>val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
<------>val &= ~(HIDMA_CH_CONTROL_MASK << 16);
<------>val |= HIDMA_CH_RESET << 16;
<------>writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
<------>/*
<------> * Delay 10ms after reset to allow DMA logic to quiesce.
<------> * Do a polled read up to 1ms and 10ms maximum.
<------> */
<------>ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
<------><------><------><------> HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
<------><------><------><------> 1000, 10000);
<------>if (ret)
<------><------>return ret;
<------>lldev->trch_state = HIDMA_CH_DISABLED;
<------>lldev->evch_state = HIDMA_CH_DISABLED;
<------>return 0;
}
/*
* The interrupt handler for HIDMA will try to consume as many pending
* EVRE from the event queue as possible. Each EVRE has an associated
* TRE that holds the user interface parameters. EVRE reports the
* result of the transaction. Hardware guarantees ordering between EVREs
* and TREs. We use last processed offset to figure out which TRE is
* associated with which EVRE. If two TREs are consumed by HW, the EVREs
* are in order in the event ring.
*
* This handler will do a one pass for consuming EVREs. Other EVREs may
* be delivered while we are working. It will try to consume incoming
* EVREs one more time and return.
*
* For unprocessed EVREs, hardware will trigger another interrupt until
* all the interrupt bits are cleared.
*
* Hardware guarantees that by the time interrupt is observed, all data
* transactions in flight are delivered to their respective places and
* are visible to the CPU.
*
* On demand paging for IOMMU is only supported for PCIe via PRI
* (Page Request Interface) not for HIDMA. All other hardware instances
* including HIDMA work on pinned DMA addresses.
*
* HIDMA is not aware of IOMMU presence since it follows the DMA API. All
* IOMMU latency will be built into the data movement time. By the time
* interrupt happens, IOMMU lookups + data movement has already taken place.
*
* While the first read in a typical PCI endpoint ISR flushes all outstanding
* requests traditionally to the destination, this concept does not apply
* here for this HW.
*/
static void hidma_ll_int_handler_internal(struct hidma_lldev *lldev, int cause)
{
<------>unsigned long irqflags;
<------>if (cause & HIDMA_ERR_INT_MASK) {
<------><------>dev_err(lldev->dev, "error 0x%x, disabling...\n",
<------><------><------><------>cause);
<------><------>/* Clear out pending interrupts */
<------><------>writel(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
<------><------>/* No further submissions. */
<------><------>hidma_ll_disable(lldev);
<------><------>/* Driver completes the txn and intimates the client.*/
<------><------>hidma_cleanup_pending_tre(lldev, 0xFF,
<------><------><------><------><------> HIDMA_EVRE_STATUS_ERROR);
<------><------>return;
<------>}
<------>spin_lock_irqsave(&lldev->lock, irqflags);
<------>writel_relaxed(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
<------>spin_unlock_irqrestore(&lldev->lock, irqflags);
<------>/*
<------> * Fine tuned for this HW...
<------> *
<------> * This ISR has been designed for this particular hardware. Relaxed
<------> * read and write accessors are used for performance reasons due to
<------> * interrupt delivery guarantees. Do not copy this code blindly and
<------> * expect that to work.
<------> *
<------> * Try to consume as many EVREs as possible.
<------> */
<------>hidma_handle_tre_completion(lldev);
}
irqreturn_t hidma_ll_inthandler(int chirq, void *arg)
{
<------>struct hidma_lldev *lldev = arg;
<------>u32 status;
<------>u32 enable;
<------>u32 cause;
<------>status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
<------>enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------>cause = status & enable;
<------>while (cause) {
<------><------>hidma_ll_int_handler_internal(lldev, cause);
<------><------>/*
<------><------> * Another interrupt might have arrived while we are
<------><------> * processing this one. Read the new cause.
<------><------> */
<------><------>status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
<------><------>enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------><------>cause = status & enable;
<------>}
<------>return IRQ_HANDLED;
}
irqreturn_t hidma_ll_inthandler_msi(int chirq, void *arg, int cause)
{
<------>struct hidma_lldev *lldev = arg;
<------>hidma_ll_int_handler_internal(lldev, cause);
<------>return IRQ_HANDLED;
}
int hidma_ll_enable(struct hidma_lldev *lldev)
{
<------>u32 val;
<------>int ret;
<------>val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
<------>val &= ~(HIDMA_CH_CONTROL_MASK << 16);
<------>val |= HIDMA_CH_ENABLE << 16;
<------>writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
<------>ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
<------><------><------><------> hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
<------><------><------><------> 1000, 10000);
<------>if (ret) {
<------><------>dev_err(lldev->dev, "event channel did not get enabled\n");
<------><------>return ret;
<------>}
<------>val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
<------>val &= ~(HIDMA_CH_CONTROL_MASK << 16);
<------>val |= HIDMA_CH_ENABLE << 16;
<------>writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
<------>ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
<------><------><------><------> hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
<------><------><------><------> 1000, 10000);
<------>if (ret) {
<------><------>dev_err(lldev->dev, "transfer channel did not get enabled\n");
<------><------>return ret;
<------>}
<------>lldev->trch_state = HIDMA_CH_ENABLED;
<------>lldev->evch_state = HIDMA_CH_ENABLED;
<------>/* enable irqs */
<------>writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------>return 0;
}
void hidma_ll_start(struct hidma_lldev *lldev)
{
<------>unsigned long irqflags;
<------>spin_lock_irqsave(&lldev->lock, irqflags);
<------>writel(lldev->tre_write_offset, lldev->trca + HIDMA_TRCA_DOORBELL_REG);
<------>spin_unlock_irqrestore(&lldev->lock, irqflags);
}
bool hidma_ll_isenabled(struct hidma_lldev *lldev)
{
<------>u32 val;
<------>val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
<------>lldev->trch_state = HIDMA_CH_STATE(val);
<------>val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
<------>lldev->evch_state = HIDMA_CH_STATE(val);
<------>/* both channels have to be enabled before calling this function */
<------>if (hidma_is_chan_enabled(lldev->trch_state) &&
<------> hidma_is_chan_enabled(lldev->evch_state))
<------><------>return true;
<------>return false;
}
void hidma_ll_queue_request(struct hidma_lldev *lldev, u32 tre_ch)
{
<------>struct hidma_tre *tre;
<------>unsigned long flags;
<------>tre = &lldev->trepool[tre_ch];
<------>/* copy the TRE into its location in the TRE ring */
<------>spin_lock_irqsave(&lldev->lock, flags);
<------>tre->tre_index = lldev->tre_write_offset / HIDMA_TRE_SIZE;
<------>lldev->pending_tre_list[tre->tre_index] = tre;
<------>memcpy(lldev->tre_ring + lldev->tre_write_offset,
<------><------><------>&tre->tre_local[0], HIDMA_TRE_SIZE);
<------>tre->err_code = 0;
<------>tre->err_info = 0;
<------>tre->queued = 1;
<------>atomic_inc(&lldev->pending_tre_count);
<------>lldev->tre_write_offset = (lldev->tre_write_offset + HIDMA_TRE_SIZE)
<------><------><------><------><------>% lldev->tre_ring_size;
<------>spin_unlock_irqrestore(&lldev->lock, flags);
}
/*
* Note that even though we stop this channel if there is a pending transaction
* in flight it will complete and follow the callback. This request will
* prevent further requests to be made.
*/
int hidma_ll_disable(struct hidma_lldev *lldev)
{
<------>u32 val;
<------>int ret;
<------>/* The channel needs to be in working state */
<------>if (!hidma_ll_isenabled(lldev))
<------><------>return 0;
<------>val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
<------>val &= ~(HIDMA_CH_CONTROL_MASK << 16);
<------>val |= HIDMA_CH_SUSPEND << 16;
<------>writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
<------>/*
<------> * Start the wait right after the suspend is confirmed.
<------> * Do a polled read up to 1ms and 10ms maximum.
<------> */
<------>ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
<------><------><------><------> HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
<------><------><------><------> 1000, 10000);
<------>if (ret)
<------><------>return ret;
<------>val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
<------>val &= ~(HIDMA_CH_CONTROL_MASK << 16);
<------>val |= HIDMA_CH_SUSPEND << 16;
<------>writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
<------>/*
<------> * Start the wait right after the suspend is confirmed
<------> * Delay up to 10ms after reset to allow DMA logic to quiesce.
<------> */
<------>ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
<------><------><------><------> HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
<------><------><------><------> 1000, 10000);
<------>if (ret)
<------><------>return ret;
<------>lldev->trch_state = HIDMA_CH_SUSPENDED;
<------>lldev->evch_state = HIDMA_CH_SUSPENDED;
<------>/* disable interrupts */
<------>writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------>return 0;
}
void hidma_ll_set_transfer_params(struct hidma_lldev *lldev, u32 tre_ch,
<------><------><------><------> dma_addr_t src, dma_addr_t dest, u32 len,
<------><------><------><------> u32 flags, u32 txntype)
{
<------>struct hidma_tre *tre;
<------>u32 *tre_local;
<------>if (tre_ch >= lldev->nr_tres) {
<------><------>dev_err(lldev->dev, "invalid TRE number in transfer params:%d",
<------><------><------>tre_ch);
<------><------>return;
<------>}
<------>tre = &lldev->trepool[tre_ch];
<------>if (atomic_read(&tre->allocated) != true) {
<------><------>dev_err(lldev->dev, "trying to set params on an unused TRE:%d",
<------><------><------>tre_ch);
<------><------>return;
<------>}
<------>tre_local = &tre->tre_local[0];
<------>tre_local[HIDMA_TRE_CFG_IDX] &= ~GENMASK(7, 0);
<------>tre_local[HIDMA_TRE_CFG_IDX] |= txntype;
<------>tre_local[HIDMA_TRE_LEN_IDX] = len;
<------>tre_local[HIDMA_TRE_SRC_LOW_IDX] = lower_32_bits(src);
<------>tre_local[HIDMA_TRE_SRC_HI_IDX] = upper_32_bits(src);
<------>tre_local[HIDMA_TRE_DEST_LOW_IDX] = lower_32_bits(dest);
<------>tre_local[HIDMA_TRE_DEST_HI_IDX] = upper_32_bits(dest);
<------>tre->int_flags = flags;
}
/*
* Called during initialization and after an error condition
* to restore hardware state.
*/
int hidma_ll_setup(struct hidma_lldev *lldev)
{
<------>int rc;
<------>u64 addr;
<------>u32 val;
<------>u32 nr_tres = lldev->nr_tres;
<------>atomic_set(&lldev->pending_tre_count, 0);
<------>lldev->tre_processed_off = 0;
<------>lldev->evre_processed_off = 0;
<------>lldev->tre_write_offset = 0;
<------>/* disable interrupts */
<------>writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------>/* clear all pending interrupts */
<------>val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
<------>writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
<------>rc = hidma_ll_reset(lldev);
<------>if (rc)
<------><------>return rc;
<------>/*
<------> * Clear all pending interrupts again.
<------> * Otherwise, we observe reset complete interrupts.
<------> */
<------>val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
<------>writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
<------>/* disable interrupts again after reset */
<------>writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------>addr = lldev->tre_dma;
<------>writel(lower_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_LOW_REG);
<------>writel(upper_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_HIGH_REG);
<------>writel(lldev->tre_ring_size, lldev->trca + HIDMA_TRCA_RING_LEN_REG);
<------>addr = lldev->evre_dma;
<------>writel(lower_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_LOW_REG);
<------>writel(upper_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_HIGH_REG);
<------>writel(HIDMA_EVRE_SIZE * nr_tres,
<------><------><------>lldev->evca + HIDMA_EVCA_RING_LEN_REG);
<------>/* configure interrupts */
<------>hidma_ll_setup_irq(lldev, lldev->msi_support);
<------>rc = hidma_ll_enable(lldev);
<------>if (rc)
<------><------>return rc;
<------>return rc;
}
void hidma_ll_setup_irq(struct hidma_lldev *lldev, bool msi)
{
<------>u32 val;
<------>lldev->msi_support = msi;
<------>/* disable interrupts again after reset */
<------>writel(0, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
<------>writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------>/* support IRQ by default */
<------>val = readl(lldev->evca + HIDMA_EVCA_INTCTRL_REG);
<------>val &= ~0xF;
<------>if (!lldev->msi_support)
<------><------>val = val | 0x1;
<------>writel(val, lldev->evca + HIDMA_EVCA_INTCTRL_REG);
<------>/* clear all pending interrupts and enable them */
<------>writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
<------>writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
}
struct hidma_lldev *hidma_ll_init(struct device *dev, u32 nr_tres,
<------><------><------><------> void __iomem *trca, void __iomem *evca,
<------><------><------><------> u8 chidx)
{
<------>u32 required_bytes;
<------>struct hidma_lldev *lldev;
<------>int rc;
<------>size_t sz;
<------>if (!trca || !evca || !dev || !nr_tres)
<------><------>return NULL;
<------>/* need at least four TREs */
<------>if (nr_tres < 4)
<------><------>return NULL;
<------>/* need an extra space */
<------>nr_tres += 1;
<------>lldev = devm_kzalloc(dev, sizeof(struct hidma_lldev), GFP_KERNEL);
<------>if (!lldev)
<------><------>return NULL;
<------>lldev->evca = evca;
<------>lldev->trca = trca;
<------>lldev->dev = dev;
<------>sz = sizeof(struct hidma_tre);
<------>lldev->trepool = devm_kcalloc(lldev->dev, nr_tres, sz, GFP_KERNEL);
<------>if (!lldev->trepool)
<------><------>return NULL;
<------>required_bytes = sizeof(lldev->pending_tre_list[0]);
<------>lldev->pending_tre_list = devm_kcalloc(dev, nr_tres, required_bytes,
<------><------><------><------><------> GFP_KERNEL);
<------>if (!lldev->pending_tre_list)
<------><------>return NULL;
<------>sz = (HIDMA_TRE_SIZE + 1) * nr_tres;
<------>lldev->tre_ring = dmam_alloc_coherent(dev, sz, &lldev->tre_dma,
<------><------><------><------><------> GFP_KERNEL);
<------>if (!lldev->tre_ring)
<------><------>return NULL;
<------>lldev->tre_ring_size = HIDMA_TRE_SIZE * nr_tres;
<------>lldev->nr_tres = nr_tres;
<------>/* the TRE ring has to be TRE_SIZE aligned */
<------>if (!IS_ALIGNED(lldev->tre_dma, HIDMA_TRE_SIZE)) {
<------><------>u8 tre_ring_shift;
<------><------>tre_ring_shift = lldev->tre_dma % HIDMA_TRE_SIZE;
<------><------>tre_ring_shift = HIDMA_TRE_SIZE - tre_ring_shift;
<------><------>lldev->tre_dma += tre_ring_shift;
<------><------>lldev->tre_ring += tre_ring_shift;
<------>}
<------>sz = (HIDMA_EVRE_SIZE + 1) * nr_tres;
<------>lldev->evre_ring = dmam_alloc_coherent(dev, sz, &lldev->evre_dma,
<------><------><------><------><------> GFP_KERNEL);
<------>if (!lldev->evre_ring)
<------><------>return NULL;
<------>lldev->evre_ring_size = HIDMA_EVRE_SIZE * nr_tres;
<------>/* the EVRE ring has to be EVRE_SIZE aligned */
<------>if (!IS_ALIGNED(lldev->evre_dma, HIDMA_EVRE_SIZE)) {
<------><------>u8 evre_ring_shift;
<------><------>evre_ring_shift = lldev->evre_dma % HIDMA_EVRE_SIZE;
<------><------>evre_ring_shift = HIDMA_EVRE_SIZE - evre_ring_shift;
<------><------>lldev->evre_dma += evre_ring_shift;
<------><------>lldev->evre_ring += evre_ring_shift;
<------>}
<------>lldev->nr_tres = nr_tres;
<------>lldev->chidx = chidx;
<------>sz = nr_tres * sizeof(struct hidma_tre *);
<------>rc = kfifo_alloc(&lldev->handoff_fifo, sz, GFP_KERNEL);
<------>if (rc)
<------><------>return NULL;
<------>rc = hidma_ll_setup(lldev);
<------>if (rc)
<------><------>return NULL;
<------>spin_lock_init(&lldev->lock);
<------>tasklet_setup(&lldev->task, hidma_ll_tre_complete);
<------>lldev->initialized = 1;
<------>writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------>return lldev;
}
int hidma_ll_uninit(struct hidma_lldev *lldev)
{
<------>u32 required_bytes;
<------>int rc = 0;
<------>u32 val;
<------>if (!lldev)
<------><------>return -ENODEV;
<------>if (!lldev->initialized)
<------><------>return 0;
<------>lldev->initialized = 0;
<------>required_bytes = sizeof(struct hidma_tre) * lldev->nr_tres;
<------>tasklet_kill(&lldev->task);
<------>memset(lldev->trepool, 0, required_bytes);
<------>lldev->trepool = NULL;
<------>atomic_set(&lldev->pending_tre_count, 0);
<------>lldev->tre_write_offset = 0;
<------>rc = hidma_ll_reset(lldev);
<------>/*
<------> * Clear all pending interrupts again.
<------> * Otherwise, we observe reset complete interrupts.
<------> */
<------>val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
<------>writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
<------>writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
<------>return rc;
}
enum dma_status hidma_ll_status(struct hidma_lldev *lldev, u32 tre_ch)
{
<------>enum dma_status ret = DMA_ERROR;
<------>struct hidma_tre *tre;
<------>unsigned long flags;
<------>u8 err_code;
<------>spin_lock_irqsave(&lldev->lock, flags);
<------>tre = &lldev->trepool[tre_ch];
<------>err_code = tre->err_code;
<------>if (err_code & HIDMA_EVRE_STATUS_COMPLETE)
<------><------>ret = DMA_COMPLETE;
<------>else if (err_code & HIDMA_EVRE_STATUS_ERROR)
<------><------>ret = DMA_ERROR;
<------>else
<------><------>ret = DMA_IN_PROGRESS;
<------>spin_unlock_irqrestore(&lldev->lock, flags);
<------>return ret;
}