Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
// SPDX-License-Identifier: GPL-2.0
/*
 * DMABUF System heap exporter
 *
 * Copyright (C) 2011 Google, Inc.
 * Copyright (C) 2019, 2020 Linaro Ltd.
 *
 * Portions based off of Andrew Davis' SRAM heap:
 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
 *	Andrew F. Davis <afd@ti.com>
 */

#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/dma-heap.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>

#include "page_pool.h"
#include "deferred-free-helper.h"

static struct dma_heap *sys_heap;
static struct dma_heap *sys_uncached_heap;

struct system_heap_buffer {
	struct dma_heap *heap;
	struct list_head attachments;
	struct mutex lock;
	unsigned long len;
	struct sg_table sg_table;
	int vmap_cnt;
	void *vaddr;
	struct deferred_freelist_item deferred_free;

	bool uncached;
};

struct dma_heap_attachment {
	struct device *dev;
	struct sg_table *table;
	struct list_head list;
	bool mapped;

	bool uncached;
};

#define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO | __GFP_COMP)
#define MID_ORDER_GFP (LOW_ORDER_GFP | __GFP_NOWARN)
#define HIGH_ORDER_GFP  (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
				| __GFP_NORETRY) & ~__GFP_RECLAIM) \
				| __GFP_COMP)
static gfp_t order_flags[] = {HIGH_ORDER_GFP, MID_ORDER_GFP, LOW_ORDER_GFP};
/*
 * The selection of the orders used for allocation (1MB, 64K, 4K) is designed
 * to match with the sizes often found in IOMMUs. Using order 4 pages instead
 * of order 0 pages can significantly improve the performance of many IOMMUs
 * by reducing TLB pressure and time spent updating page tables.
 */
static const unsigned int orders[] = {8, 4, 0};
#define NUM_ORDERS ARRAY_SIZE(orders)
struct dmabuf_page_pool *pools[NUM_ORDERS];

static struct sg_table *dup_sg_table(struct sg_table *table)
{
	struct sg_table *new_table;
	int ret, i;
	struct scatterlist *sg, *new_sg;

	new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
	if (!new_table)
		return ERR_PTR(-ENOMEM);

	ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
	if (ret) {
		kfree(new_table);
		return ERR_PTR(-ENOMEM);
	}

	new_sg = new_table->sgl;
	for_each_sgtable_sg(table, sg, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
		new_sg = sg_next(new_sg);
	}

	return new_table;
}

static int system_heap_attach(struct dma_buf *dmabuf,
			      struct dma_buf_attachment *attachment)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct dma_heap_attachment *a;
	struct sg_table *table;

	a = kzalloc(sizeof(*a), GFP_KERNEL);
	if (!a)
		return -ENOMEM;

	table = dup_sg_table(&buffer->sg_table);
	if (IS_ERR(table)) {
		kfree(a);
		return -ENOMEM;
	}

	a->table = table;
	a->dev = attachment->dev;
	INIT_LIST_HEAD(&a->list);
	a->mapped = false;
	a->uncached = buffer->uncached;
	attachment->priv = a;

	mutex_lock(&buffer->lock);
	list_add(&a->list, &buffer->attachments);
	mutex_unlock(&buffer->lock);

	return 0;
}

static void system_heap_detach(struct dma_buf *dmabuf,
			       struct dma_buf_attachment *attachment)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct dma_heap_attachment *a = attachment->priv;

	mutex_lock(&buffer->lock);
	list_del(&a->list);
	mutex_unlock(&buffer->lock);

	sg_free_table(a->table);
	kfree(a->table);
	kfree(a);
}

static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
						enum dma_data_direction direction)
{
	struct dma_heap_attachment *a = attachment->priv;
	struct sg_table *table = a->table;
	int attr = attachment->dma_map_attrs;
	int ret;

	if (a->uncached)
		attr |= DMA_ATTR_SKIP_CPU_SYNC;

	ret = dma_map_sgtable(attachment->dev, table, direction, attr);
	if (ret)
		return ERR_PTR(ret);

	a->mapped = true;
	return table;
}

static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
				      struct sg_table *table,
				      enum dma_data_direction direction)
{
	struct dma_heap_attachment *a = attachment->priv;
	int attr = attachment->dma_map_attrs;

	if (a->uncached)
		attr |= DMA_ATTR_SKIP_CPU_SYNC;
	a->mapped = false;
	dma_unmap_sgtable(attachment->dev, table, direction, attr);
}

static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
						enum dma_data_direction direction)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct dma_heap_attachment *a;

	mutex_lock(&buffer->lock);

	if (buffer->vmap_cnt)
		invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);

	if (!buffer->uncached) {
		list_for_each_entry(a, &buffer->attachments, list) {
			if (!a->mapped)
				continue;
			dma_sync_sgtable_for_cpu(a->dev, a->table, direction);
		}
	}
	mutex_unlock(&buffer->lock);

	return 0;
}

static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
					      enum dma_data_direction direction)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct dma_heap_attachment *a;

	mutex_lock(&buffer->lock);

	if (buffer->vmap_cnt)
		flush_kernel_vmap_range(buffer->vaddr, buffer->len);

	if (!buffer->uncached) {
		list_for_each_entry(a, &buffer->attachments, list) {
			if (!a->mapped)
				continue;
			dma_sync_sgtable_for_device(a->dev, a->table, direction);
		}
	}
	mutex_unlock(&buffer->lock);

	return 0;
}

static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct sg_table *table = &buffer->sg_table;
	unsigned long addr = vma->vm_start;
	struct sg_page_iter piter;
	int ret;

	if (buffer->uncached)
		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);

	for_each_sgtable_page(table, &piter, vma->vm_pgoff) {
		struct page *page = sg_page_iter_page(&piter);

		ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE,
				      vma->vm_page_prot);
		if (ret)
			return ret;
		addr += PAGE_SIZE;
		if (addr >= vma->vm_end)
			return 0;
	}
	return 0;
}

static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
{
	struct sg_table *table = &buffer->sg_table;
	int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
	struct page **pages = vmalloc(sizeof(struct page *) * npages);
	struct page **tmp = pages;
	struct sg_page_iter piter;
	pgprot_t pgprot = PAGE_KERNEL;
	void *vaddr;

	if (!pages)
		return ERR_PTR(-ENOMEM);

	if (buffer->uncached)
		pgprot = pgprot_writecombine(PAGE_KERNEL);

	for_each_sgtable_page(table, &piter, 0) {
		WARN_ON(tmp - pages >= npages);
		*tmp++ = sg_page_iter_page(&piter);
	}

	vaddr = vmap(pages, npages, VM_MAP, pgprot);
	vfree(pages);

	if (!vaddr)
		return ERR_PTR(-ENOMEM);

	return vaddr;
}

static void *system_heap_vmap(struct dma_buf *dmabuf)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	void *vaddr;

	mutex_lock(&buffer->lock);
	if (buffer->vmap_cnt) {
		buffer->vmap_cnt++;
		vaddr = buffer->vaddr;
		goto out;
	}

	vaddr = system_heap_do_vmap(buffer);
	if (IS_ERR(vaddr))
		goto out;

	buffer->vaddr = vaddr;
	buffer->vmap_cnt++;
out:
	mutex_unlock(&buffer->lock);

	return vaddr;
}

static void system_heap_vunmap(struct dma_buf *dmabuf, void *vaddr)
{
	struct system_heap_buffer *buffer = dmabuf->priv;

	mutex_lock(&buffer->lock);
	if (!--buffer->vmap_cnt) {
		vunmap(buffer->vaddr);
		buffer->vaddr = NULL;
	}
	mutex_unlock(&buffer->lock);
}

static int system_heap_zero_buffer(struct system_heap_buffer *buffer)
{
	struct sg_table *sgt = &buffer->sg_table;
	struct sg_page_iter piter;
	struct page *p;
	void *vaddr;
	int ret = 0;

	for_each_sgtable_page(sgt, &piter, 0) {
		p = sg_page_iter_page(&piter);
		vaddr = kmap_atomic(p);
		memset(vaddr, 0, PAGE_SIZE);
		kunmap_atomic(vaddr);
	}

	return ret;
}

static void system_heap_buf_free(struct deferred_freelist_item *item,
				 enum df_reason reason)
{
	struct system_heap_buffer *buffer;
	struct sg_table *table;
	struct scatterlist *sg;
	int i, j;

	buffer = container_of(item, struct system_heap_buffer, deferred_free);
	/* Zero the buffer pages before adding back to the pool */
	if (reason == DF_NORMAL)
		if (system_heap_zero_buffer(buffer))
			reason = DF_UNDER_PRESSURE; // On failure, just free

	table = &buffer->sg_table;
	for_each_sgtable_sg(table, sg, i) {
		struct page *page = sg_page(sg);

		if (reason == DF_UNDER_PRESSURE) {
			__free_pages(page, compound_order(page));
		} else {
			for (j = 0; j < NUM_ORDERS; j++) {
				if (compound_order(page) == orders[j])
					break;
			}
			dmabuf_page_pool_free(pools[j], page);
		}
	}
	sg_free_table(table);
	kfree(buffer);
}

static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;

	deferred_free(&buffer->deferred_free, system_heap_buf_free, npages);
}

static const struct dma_buf_ops system_heap_buf_ops = {
	.attach = system_heap_attach,
	.detach = system_heap_detach,
	.map_dma_buf = system_heap_map_dma_buf,
	.unmap_dma_buf = system_heap_unmap_dma_buf,
	.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
	.end_cpu_access = system_heap_dma_buf_end_cpu_access,
	.mmap = system_heap_mmap,
	.vmap = system_heap_vmap,
	.vunmap = system_heap_vunmap,
	.release = system_heap_dma_buf_release,
};

static struct page *alloc_largest_available(unsigned long size,
					    unsigned int max_order)
{
	struct page *page;
	int i;

	for (i = 0; i < NUM_ORDERS; i++) {
		if (size <  (PAGE_SIZE << orders[i]))
			continue;
		if (max_order < orders[i])
			continue;
		page = dmabuf_page_pool_alloc(pools[i]);
		if (!page)
			continue;
		return page;
	}
	return NULL;
}

static struct dma_buf *system_heap_do_allocate(struct dma_heap *heap,
					       unsigned long len,
					       unsigned long fd_flags,
					       unsigned long heap_flags,
					       bool uncached)
{
	struct system_heap_buffer *buffer;
	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
	unsigned long size_remaining = len;
	unsigned int max_order = orders[0];
	struct dma_buf *dmabuf;
	struct sg_table *table;
	struct scatterlist *sg;
	struct list_head pages;
	struct page *page, *tmp_page;
	int i, ret = -ENOMEM;

	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
	if (!buffer)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&buffer->attachments);
	mutex_init(&buffer->lock);
	buffer->heap = heap;
	buffer->len = len;
	buffer->uncached = uncached;

	INIT_LIST_HEAD(&pages);
	i = 0;
	while (size_remaining > 0) {
		/*
		 * Avoid trying to allocate memory if the process
		 * has been killed by SIGKILL
		 */
		if (fatal_signal_pending(current))
			goto free_buffer;

		page = alloc_largest_available(size_remaining, max_order);
		if (!page)
			goto free_buffer;

		list_add_tail(&page->lru, &pages);
		size_remaining -= page_size(page);
		max_order = compound_order(page);
		i++;
	}

	table = &buffer->sg_table;
	if (sg_alloc_table(table, i, GFP_KERNEL))
		goto free_buffer;

	sg = table->sgl;
	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
		sg_set_page(sg, page, page_size(page), 0);
		sg = sg_next(sg);
		list_del(&page->lru);
	}

	/* create the dmabuf */
	exp_info.exp_name = dma_heap_get_name(heap);
	exp_info.ops = &system_heap_buf_ops;
	exp_info.size = buffer->len;
	exp_info.flags = fd_flags;
	exp_info.priv = buffer;
	dmabuf = dma_buf_export(&exp_info);
	if (IS_ERR(dmabuf)) {
		ret = PTR_ERR(dmabuf);
		goto free_pages;
	}

	/*
	 * For uncached buffers, we need to initially flush cpu cache, since
	 * the __GFP_ZERO on the allocation means the zeroing was done by the
	 * cpu and thus it is likely cached. Map (and implicitly flush) and
	 * unmap it now so we don't get corruption later on.
	 */
	if (buffer->uncached) {
		dma_map_sgtable(dma_heap_get_dev(heap), table, DMA_BIDIRECTIONAL, 0);
		dma_unmap_sgtable(dma_heap_get_dev(heap), table, DMA_BIDIRECTIONAL, 0);
	}

	return dmabuf;

free_pages:
	for_each_sgtable_sg(table, sg, i) {
		struct page *p = sg_page(sg);

		__free_pages(p, compound_order(p));
	}
	sg_free_table(table);
free_buffer:
	list_for_each_entry_safe(page, tmp_page, &pages, lru)
		__free_pages(page, compound_order(page));
	kfree(buffer);

	return ERR_PTR(ret);
}

static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
					    unsigned long len,
					    unsigned long fd_flags,
					    unsigned long heap_flags)
{
	return system_heap_do_allocate(heap, len, fd_flags, heap_flags, false);
}

static long system_get_pool_size(struct dma_heap *heap)
{
	int i;
	long num_pages = 0;
	struct dmabuf_page_pool **pool;

	pool = pools;
	for (i = 0; i < NUM_ORDERS; i++, pool++) {
		num_pages += ((*pool)->count[POOL_LOWPAGE] +
			      (*pool)->count[POOL_HIGHPAGE]) << (*pool)->order;
	}

	return num_pages << PAGE_SHIFT;
}

static const struct dma_heap_ops system_heap_ops = {
	.allocate = system_heap_allocate,
	.get_pool_size = system_get_pool_size,
};

static struct dma_buf *system_uncached_heap_allocate(struct dma_heap *heap,
						     unsigned long len,
						     unsigned long fd_flags,
						     unsigned long heap_flags)
{
	return system_heap_do_allocate(heap, len, fd_flags, heap_flags, true);
}

/* Dummy function to be used until we can call coerce_mask_and_coherent */
static struct dma_buf *system_uncached_heap_not_initialized(struct dma_heap *heap,
							    unsigned long len,
							    unsigned long fd_flags,
							    unsigned long heap_flags)
{
	return ERR_PTR(-EBUSY);
}

static struct dma_heap_ops system_uncached_heap_ops = {
	/* After system_heap_create is complete, we will swap this */
	.allocate = system_uncached_heap_not_initialized,
};

static int set_heap_dev_dma(struct device *heap_dev)
{
	int err = 0;

	if (!heap_dev)
		return -EINVAL;

	dma_coerce_mask_and_coherent(heap_dev, DMA_BIT_MASK(64));

	if (!heap_dev->dma_parms) {
		heap_dev->dma_parms = devm_kzalloc(heap_dev,
						   sizeof(*heap_dev->dma_parms),
						   GFP_KERNEL);
		if (!heap_dev->dma_parms)
			return -ENOMEM;

		err = dma_set_max_seg_size(heap_dev, (unsigned int)DMA_BIT_MASK(64));
		if (err) {
			devm_kfree(heap_dev, heap_dev->dma_parms);
			dev_err(heap_dev, "Failed to set DMA segment size, err:%d\n", err);
			return err;
		}
	}

	return 0;
}

static int system_heap_create(void)
{
	struct dma_heap_export_info exp_info;
	int i, err = 0;

	for (i = 0; i < NUM_ORDERS; i++) {
		pools[i] = dmabuf_page_pool_create(order_flags[i], orders[i]);

		if (!pools[i]) {
			int j;

			pr_err("%s: page pool creation failed!\n", __func__);
			for (j = 0; j < i; j++)
				dmabuf_page_pool_destroy(pools[j]);
			return -ENOMEM;
		}
	}

	exp_info.name = "system";
	exp_info.ops = &system_heap_ops;
	exp_info.priv = NULL;

	sys_heap = dma_heap_add(&exp_info);
	if (IS_ERR(sys_heap))
		return PTR_ERR(sys_heap);

	exp_info.name = "system-uncached";
	exp_info.ops = &system_uncached_heap_ops;
	exp_info.priv = NULL;

	sys_uncached_heap = dma_heap_add(&exp_info);
	if (IS_ERR(sys_uncached_heap))
		return PTR_ERR(sys_uncached_heap);

	err = set_heap_dev_dma(dma_heap_get_dev(sys_uncached_heap));
	if (err)
		return err;

	mb(); /* make sure we only set allocate after dma_mask is set */
	system_uncached_heap_ops.allocate = system_uncached_heap_allocate;

	return 0;
}
module_init(system_heap_create);
MODULE_LICENSE("GPL v2");