Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Fence mechanism for dma-buf and to allow for asynchronous dma access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2012 Canonical Ltd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 2012 Texas Instruments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Authors:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * Rob Clark <robdclark@gmail.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/atomic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/dma-fence.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #define CREATE_TRACE_POINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <trace/events/dma_fence.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) static DEFINE_SPINLOCK(dma_fence_stub_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) static struct dma_fence dma_fence_stub;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * fence context counter: each execution context should have its own
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * fence context, this allows checking if fences belong to the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * context or not. One device can have multiple separate contexts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * and they're used if some engine can run independently of another.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  * DOC: DMA fences overview
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * DMA fences, represented by &struct dma_fence, are the kernel internal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * synchronization primitive for DMA operations like GPU rendering, video
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * encoding/decoding, or displaying buffers on a screen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * A fence is initialized using dma_fence_init() and completed using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  * dma_fence_signal(). Fences are associated with a context, allocated through
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  * dma_fence_context_alloc(), and all fences on the same context are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  * fully ordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * Since the purposes of fences is to facilitate cross-device and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * cross-application synchronization, there's multiple ways to use one:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * - Individual fences can be exposed as a &sync_file, accessed as a file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  *   descriptor from userspace, created by calling sync_file_create(). This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  *   called explicit fencing, since userspace passes around explicit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  *   synchronization points.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * - Some subsystems also have their own explicit fencing primitives, like
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  *   fence to be updated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  * - Then there's also implicit fencing, where the synchronization points are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  *   implicitly passed around as part of shared &dma_buf instances. Such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  *   implicit fences are stored in &struct dma_resv through the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  *   &dma_buf.resv pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * DOC: fence cross-driver contract
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  * Since &dma_fence provide a cross driver contract, all drivers must follow the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  * same rules:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * * Fences must complete in a reasonable time. Fences which represent kernels
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  *   and shaders submitted by userspace, which could run forever, must be backed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  *   up by timeout and gpu hang recovery code. Minimally that code must prevent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  *   further command submission and force complete all in-flight fences, e.g.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  *   when the driver or hardware do not support gpu reset, or if the gpu reset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  *   failed for some reason. Ideally the driver supports gpu recovery which only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  *   affects the offending userspace context, and no other userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  *   submissions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * * Drivers may have different ideas of what completion within a reasonable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  *   time means. Some hang recovery code uses a fixed timeout, others a mix
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  *   between observing forward progress and increasingly strict timeouts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  *   Drivers should not try to second guess timeout handling of fences from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  *   other drivers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * * To ensure there's no deadlocks of dma_fence_wait() against other locks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  *   drivers should annotate all code required to reach dma_fence_signal(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  *   which completes the fences, with dma_fence_begin_signalling() and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  *   dma_fence_end_signalling().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  *   This means any code required for fence completion cannot acquire a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  *   &dma_resv lock. Note that this also pulls in the entire established
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  *   locking hierarchy around dma_resv_lock() and dma_resv_unlock().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  * * Drivers are allowed to call dma_fence_wait() from their &shrinker
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  *   callbacks. This means any code required for fence completion cannot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  *   allocate memory with GFP_KERNEL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)  * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)  *   respectively &mmu_interval_notifier callbacks. This means any code required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)  *   for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  *   Only GFP_ATOMIC is permissible, which might fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  * Note that only GPU drivers have a reasonable excuse for both requiring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)  * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  * track asynchronous compute work using &dma_fence. No driver outside of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)  * drivers/gpu should ever call dma_fence_wait() in such contexts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) static const char *dma_fence_stub_get_name(struct dma_fence *fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)         return "stub";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) static const struct dma_fence_ops dma_fence_stub_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	.get_driver_name = dma_fence_stub_get_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	.get_timeline_name = dma_fence_stub_get_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)  * dma_fence_get_stub - return a signaled fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)  * Return a stub fence which is already signaled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) struct dma_fence *dma_fence_get_stub(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	spin_lock(&dma_fence_stub_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	if (!dma_fence_stub.ops) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		dma_fence_init(&dma_fence_stub,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 			       &dma_fence_stub_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 			       &dma_fence_stub_lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 			       0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		dma_fence_signal_locked(&dma_fence_stub);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	spin_unlock(&dma_fence_stub_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	return dma_fence_get(&dma_fence_stub);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) EXPORT_SYMBOL(dma_fence_get_stub);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)  * dma_fence_context_alloc - allocate an array of fence contexts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)  * @num: amount of contexts to allocate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)  * This function will return the first index of the number of fence contexts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)  * allocated.  The fence context is used for setting &dma_fence.context to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)  * unique number by passing the context to dma_fence_init().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) u64 dma_fence_context_alloc(unsigned num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	WARN_ON(!num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	return atomic64_fetch_add(num, &dma_fence_context_counter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) EXPORT_SYMBOL(dma_fence_context_alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)  * DOC: fence signalling annotation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)  * Proving correctness of all the kernel code around &dma_fence through code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)  * review and testing is tricky for a few reasons:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)  * * It is a cross-driver contract, and therefore all drivers must follow the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166)  *   same rules for lock nesting order, calling contexts for various functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)  *   and anything else significant for in-kernel interfaces. But it is also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)  *   impossible to test all drivers in a single machine, hence brute-force N vs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)  *   N testing of all combinations is impossible. Even just limiting to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)  *   possible combinations is infeasible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)  * * There is an enormous amount of driver code involved. For render drivers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)  *   there's the tail of command submission, after fences are published,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)  *   scheduler code, interrupt and workers to process job completion,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)  *   and timeout, gpu reset and gpu hang recovery code. Plus for integration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)  *   with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)  *   and &shrinker. For modesetting drivers there's the commit tail functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)  *   between when fences for an atomic modeset are published, and when the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)  *   corresponding vblank completes, including any interrupt processing and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)  *   related workers. Auditing all that code, across all drivers, is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)  *   feasible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)  * * Due to how many other subsystems are involved and the locking hierarchies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)  *   this pulls in there is extremely thin wiggle-room for driver-specific
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)  *   differences. &dma_fence interacts with almost all of the core memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)  *   handling through page fault handlers via &dma_resv, dma_resv_lock() and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)  *   dma_resv_unlock(). On the other side it also interacts through all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)  *   allocation sites through &mmu_notifier and &shrinker.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)  * Furthermore lockdep does not handle cross-release dependencies, which means
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)  * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)  * at runtime with some quick testing. The simplest example is one thread
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)  * waiting on a &dma_fence while holding a lock::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)  *     lock(A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)  *     dma_fence_wait(B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)  *     unlock(A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)  * while the other thread is stuck trying to acquire the same lock, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)  * prevents it from signalling the fence the previous thread is stuck waiting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)  * on::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)  *     lock(A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)  *     unlock(A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)  *     dma_fence_signal(B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)  * By manually annotating all code relevant to signalling a &dma_fence we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)  * teach lockdep about these dependencies, which also helps with the validation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)  * headache since now lockdep can check all the rules for us::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)  *    cookie = dma_fence_begin_signalling();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)  *    lock(A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)  *    unlock(A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)  *    dma_fence_signal(B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)  *    dma_fence_end_signalling(cookie);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)  * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)  * annotate critical sections the following rules need to be observed:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)  * * All code necessary to complete a &dma_fence must be annotated, from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)  *   point where a fence is accessible to other threads, to the point where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)  *   dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)  *   and due to the very strict rules and many corner cases it is infeasible to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)  *   catch these just with review or normal stress testing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)  * * &struct dma_resv deserves a special note, since the readers are only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)  *   protected by rcu. This means the signalling critical section starts as soon
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)  *   as the new fences are installed, even before dma_resv_unlock() is called.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)  * * The only exception are fast paths and opportunistic signalling code, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)  *   calls dma_fence_signal() purely as an optimization, but is not required to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)  *   guarantee completion of a &dma_fence. The usual example is a wait IOCTL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)  *   which calls dma_fence_signal(), while the mandatory completion path goes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)  *   through a hardware interrupt and possible job completion worker.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)  * * To aid composability of code, the annotations can be freely nested, as long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)  *   as the overall locking hierarchy is consistent. The annotations also work
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)  *   both in interrupt and process context. Due to implementation details this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)  *   requires that callers pass an opaque cookie from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)  *   dma_fence_begin_signalling() to dma_fence_end_signalling().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)  * * Validation against the cross driver contract is implemented by priming
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)  *   lockdep with the relevant hierarchy at boot-up. This means even just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)  *   testing with a single device is enough to validate a driver, at least as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)  *   far as deadlocks with dma_fence_wait() against dma_fence_signal() are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)  *   concerned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) #ifdef CONFIG_LOCKDEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) static struct lockdep_map dma_fence_lockdep_map = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	.name = "dma_fence_map"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)  * dma_fence_begin_signalling - begin a critical DMA fence signalling section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)  * Drivers should use this to annotate the beginning of any code section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)  * required to eventually complete &dma_fence by calling dma_fence_signal().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)  * The end of these critical sections are annotated with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)  * dma_fence_end_signalling().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262)  * Returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)  * Opaque cookie needed by the implementation, which needs to be passed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)  * dma_fence_end_signalling().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) bool dma_fence_begin_signalling(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	/* explicitly nesting ... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	if (lock_is_held_type(&dma_fence_lockdep_map, 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	/* rely on might_sleep check for soft/hardirq locks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	if (in_atomic())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	/* ... and non-recursive readlock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) EXPORT_SYMBOL(dma_fence_begin_signalling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)  * dma_fence_end_signalling - end a critical DMA fence signalling section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)  * @cookie: opaque cookie from dma_fence_begin_signalling()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)  * Closes a critical section annotation opened by dma_fence_begin_signalling().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) void dma_fence_end_signalling(bool cookie)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	if (cookie)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	lock_release(&dma_fence_lockdep_map, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) EXPORT_SYMBOL(dma_fence_end_signalling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) void __dma_fence_might_wait(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	bool tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	if (tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		lock_release(&dma_fence_lockdep_map, _THIS_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	lock_map_acquire(&dma_fence_lockdep_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	lock_map_release(&dma_fence_lockdep_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	if (tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)  * dma_fence_signal_timestamp_locked - signal completion of a fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)  * @fence: the fence to signal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)  * Signal completion for software callbacks on a fence, this will unblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)  * dma_fence_wait() calls and run all the callbacks added with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)  * dma_fence_add_callback(). Can be called multiple times, but since a fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)  * can only go from the unsignaled to the signaled state and not back, it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)  * only be effective the first time. Set the timestamp provided as the fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)  * signal timestamp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)  * Unlike dma_fence_signal_timestamp(), this function must be called with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327)  * &dma_fence.lock held.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)  * Returns 0 on success and a negative error value when @fence has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)  * signalled already.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 				      ktime_t timestamp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	struct dma_fence_cb *cur, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	struct list_head cb_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	lockdep_assert_held(fence->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 				      &fence->flags)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	/* Stash the cb_list before replacing it with the timestamp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	list_replace(&fence->cb_list, &cb_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	fence->timestamp = timestamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	trace_dma_fence_signaled(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 		INIT_LIST_HEAD(&cur->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 		cur->func(fence, cur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361)  * dma_fence_signal_timestamp - signal completion of a fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)  * @fence: the fence to signal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)  * Signal completion for software callbacks on a fence, this will unblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366)  * dma_fence_wait() calls and run all the callbacks added with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367)  * dma_fence_add_callback(). Can be called multiple times, but since a fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368)  * can only go from the unsignaled to the signaled state and not back, it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)  * only be effective the first time. Set the timestamp provided as the fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370)  * signal timestamp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)  * Returns 0 on success and a negative error value when @fence has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)  * signalled already.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	if (!fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	ret = dma_fence_signal_timestamp_locked(fence, timestamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) EXPORT_SYMBOL(dma_fence_signal_timestamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)  * dma_fence_signal_locked - signal completion of a fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)  * @fence: the fence to signal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)  * Signal completion for software callbacks on a fence, this will unblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)  * dma_fence_wait() calls and run all the callbacks added with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)  * dma_fence_add_callback(). Can be called multiple times, but since a fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)  * can only go from the unsignaled to the signaled state and not back, it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)  * only be effective the first time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401)  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)  * held.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)  * Returns 0 on success and a negative error value when @fence has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405)  * signalled already.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) int dma_fence_signal_locked(struct dma_fence *fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	return dma_fence_signal_timestamp_locked(fence, ktime_get());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) EXPORT_SYMBOL(dma_fence_signal_locked);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)  * dma_fence_signal - signal completion of a fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)  * @fence: the fence to signal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417)  * Signal completion for software callbacks on a fence, this will unblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)  * dma_fence_wait() calls and run all the callbacks added with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419)  * dma_fence_add_callback(). Can be called multiple times, but since a fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)  * can only go from the unsignaled to the signaled state and not back, it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)  * only be effective the first time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)  * Returns 0 on success and a negative error value when @fence has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)  * signalled already.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) int dma_fence_signal(struct dma_fence *fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	bool tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	if (!fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	tmp = dma_fence_begin_signalling();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	dma_fence_end_signalling(tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) EXPORT_SYMBOL(dma_fence_signal);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)  * dma_fence_wait_timeout - sleep until the fence gets signaled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449)  * or until timeout elapses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)  * @fence: the fence to wait on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451)  * @intr: if true, do an interruptible wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452)  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454)  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455)  * remaining timeout in jiffies on success. Other error values may be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456)  * returned on custom implementations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458)  * Performs a synchronous wait on this fence. It is assumed the caller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459)  * directly or indirectly (buf-mgr between reservation and committing)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460)  * holds a reference to the fence, otherwise the fence might be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461)  * freed before return, resulting in undefined behavior.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463)  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) signed long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	signed long ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	if (WARN_ON(timeout < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 	might_sleep();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	__dma_fence_might_wait();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	trace_dma_fence_wait_start(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	if (fence->ops->wait)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 		ret = fence->ops->wait(fence, intr, timeout);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 		ret = dma_fence_default_wait(fence, intr, timeout);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	trace_dma_fence_wait_end(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) EXPORT_SYMBOL(dma_fence_wait_timeout);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488)  * dma_fence_release - default relese function for fences
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489)  * @kref: &dma_fence.recfount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491)  * This is the default release functions for &dma_fence. Drivers shouldn't call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492)  * this directly, but instead call dma_fence_put().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) void dma_fence_release(struct kref *kref)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	struct dma_fence *fence =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 		container_of(kref, struct dma_fence, refcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	trace_dma_fence_destroy(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	if (WARN(!list_empty(&fence->cb_list) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 		 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 		 "Fence %s:%s:%llx:%llx released with pending signals!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 		 fence->ops->get_driver_name(fence),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 		 fence->ops->get_timeline_name(fence),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 		 fence->context, fence->seqno)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 		unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 		 * Failed to signal before release, likely a refcounting issue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		 * This should never happen, but if it does make sure that we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 		 * don't leave chains dangling. We set the error flag first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 		 * so that the callbacks know this signal is due to an error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 		spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 		fence->error = -EDEADLK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 		dma_fence_signal_locked(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 		spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	if (fence->ops->release)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 		fence->ops->release(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 		dma_fence_free(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) EXPORT_SYMBOL(dma_fence_release);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)  * dma_fence_free - default release function for &dma_fence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)  * @fence: fence to release
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)  * This is the default implementation for &dma_fence_ops.release. It calls
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)  * kfree_rcu() on @fence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) void dma_fence_free(struct dma_fence *fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	kfree_rcu(fence, rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) EXPORT_SYMBOL(dma_fence_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) static bool __dma_fence_enable_signaling(struct dma_fence *fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	bool was_set;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	lockdep_assert_held(fence->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 				   &fence->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	if (!was_set && fence->ops->enable_signaling) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 		trace_dma_fence_enable_signal(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 		if (!fence->ops->enable_signaling(fence)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 			dma_fence_signal_locked(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 			return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567)  * dma_fence_enable_sw_signaling - enable signaling on fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)  * @fence: the fence to enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570)  * This will request for sw signaling to be enabled, to make the fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571)  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572)  * internally.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) void dma_fence_enable_sw_signaling(struct dma_fence *fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	__dma_fence_enable_signaling(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588)  * dma_fence_add_callback - add a callback to be called when the fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589)  * is signaled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590)  * @fence: the fence to wait on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591)  * @cb: the callback to register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592)  * @func: the function to call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594)  * @cb will be initialized by dma_fence_add_callback(), no initialization
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595)  * by the caller is required. Any number of callbacks can be registered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596)  * to a fence, but a callback can only be registered to one fence at a time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598)  * Note that the callback can be called from an atomic context.  If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599)  * fence is already signaled, this function will return -ENOENT (and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)  * *not* call the callback).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602)  * Add a software callback to the fence. Same restrictions apply to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604)  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605)  * when software access is enabled, the creator of the fence is required to keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606)  * the fence alive until after it signals with dma_fence_signal(). The callback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607)  * itself can be called from irq context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609)  * Returns 0 in case of success, -ENOENT if the fence is already signaled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610)  * and -EINVAL in case of error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 			   dma_fence_func_t func)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	if (WARN_ON(!fence || !func))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 		INIT_LIST_HEAD(&cb->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 		return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 	if (__dma_fence_enable_signaling(fence)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 		cb->func = func;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 		list_add_tail(&cb->node, &fence->cb_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 		INIT_LIST_HEAD(&cb->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 		ret = -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) EXPORT_SYMBOL(dma_fence_add_callback);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643)  * dma_fence_get_status - returns the status upon completion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644)  * @fence: the dma_fence to query
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646)  * This wraps dma_fence_get_status_locked() to return the error status
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647)  * condition on a signaled fence. See dma_fence_get_status_locked() for more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648)  * details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650)  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651)  * been signaled without an error condition, or a negative error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652)  * if the fence has been completed in err.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) int dma_fence_get_status(struct dma_fence *fence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 	int status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	status = dma_fence_get_status_locked(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 	return status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) EXPORT_SYMBOL(dma_fence_get_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668)  * dma_fence_remove_callback - remove a callback from the signaling list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669)  * @fence: the fence to wait on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670)  * @cb: the callback to remove
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672)  * Remove a previously queued callback from the fence. This function returns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673)  * true if the callback is successfully removed, or false if the fence has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674)  * already been signaled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676)  * *WARNING*:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677)  * Cancelling a callback should only be done if you really know what you're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678)  * doing, since deadlocks and race conditions could occur all too easily. For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679)  * this reason, it should only ever be done on hardware lockup recovery,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680)  * with a reference held to the fence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682)  * Behaviour is undefined if @cb has not been added to @fence using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683)  * dma_fence_add_callback() beforehand.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) bool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	bool ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 	ret = !list_empty(&cb->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 		list_del_init(&cb->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) EXPORT_SYMBOL(dma_fence_remove_callback);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) struct default_wait_cb {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	struct dma_fence_cb base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	struct task_struct *task;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	struct default_wait_cb *wait =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 		container_of(cb, struct default_wait_cb, base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 	wake_up_state(wait->task, TASK_NORMAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718)  * dma_fence_default_wait - default sleep until the fence gets signaled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719)  * or until timeout elapses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720)  * @fence: the fence to wait on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721)  * @intr: if true, do an interruptible wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722)  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724)  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725)  * remaining timeout in jiffies on success. If timeout is zero the value one is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726)  * returned if the fence is already signaled for consistency with other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727)  * functions taking a jiffies timeout.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) signed long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 	struct default_wait_cb cb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 	signed long ret = timeout ? timeout : 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 	spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	if (intr && signal_pending(current)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 		ret = -ERESTARTSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 	if (!__dma_fence_enable_signaling(fence))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	if (!timeout) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 		ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 	cb.base.func = dma_fence_default_wait_cb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 	cb.task = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 	list_add(&cb.base.node, &fence->cb_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 		if (intr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 			__set_current_state(TASK_INTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 			__set_current_state(TASK_UNINTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 		spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 		ret = schedule_timeout(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 		spin_lock_irqsave(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 		if (ret > 0 && intr && signal_pending(current))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 			ret = -ERESTARTSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 	if (!list_empty(&cb.base.node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 		list_del(&cb.base.node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 	__set_current_state(TASK_RUNNING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 	spin_unlock_irqrestore(fence->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) EXPORT_SYMBOL(dma_fence_default_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) static bool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 			    uint32_t *idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 	for (i = 0; i < count; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 		struct dma_fence *fence = fences[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 			if (idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 				*idx = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800)  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801)  * or until timeout elapses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802)  * @fences: array of fences to wait on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803)  * @count: number of fences to wait on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804)  * @intr: if true, do an interruptible wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805)  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806)  * @idx: used to store the first signaled fence index, meaningful only on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807)  *	positive return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809)  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810)  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811)  * on success.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813)  * Synchronous waits for the first fence in the array to be signaled. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814)  * caller needs to hold a reference to all fences in the array, otherwise a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815)  * fence might be freed before return, resulting in undefined behavior.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817)  * See also dma_fence_wait() and dma_fence_wait_timeout().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) signed long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 			   bool intr, signed long timeout, uint32_t *idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 	struct default_wait_cb *cb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 	signed long ret = timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 	unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	if (WARN_ON(!fences || !count || timeout < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	if (timeout == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 		for (i = 0; i < count; ++i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 			if (dma_fence_is_signaled(fences[i])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 				if (idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 					*idx = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 				return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 	if (cb == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 		goto err_free_cb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 	for (i = 0; i < count; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 		struct dma_fence *fence = fences[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 		cb[i].task = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 		if (dma_fence_add_callback(fence, &cb[i].base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 					   dma_fence_default_wait_cb)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) 			/* This fence is already signaled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 			if (idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 				*idx = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 			goto fence_rm_cb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 	while (ret > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 		if (intr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 			set_current_state(TASK_INTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 			set_current_state(TASK_UNINTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 		if (dma_fence_test_signaled_any(fences, count, idx))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 		ret = schedule_timeout(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) 		if (ret > 0 && intr && signal_pending(current))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) 			ret = -ERESTARTSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 	__set_current_state(TASK_RUNNING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) fence_rm_cb:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) 	while (i-- > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 		dma_fence_remove_callback(fences[i], &cb[i].base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) err_free_cb:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) 	kfree(cb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) EXPORT_SYMBOL(dma_fence_wait_any_timeout);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889)  * dma_fence_init - Initialize a custom fence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890)  * @fence: the fence to initialize
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891)  * @ops: the dma_fence_ops for operations on this fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892)  * @lock: the irqsafe spinlock to use for locking this fence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893)  * @context: the execution context this fence is run on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894)  * @seqno: a linear increasing sequence number for this context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896)  * Initializes an allocated fence, the caller doesn't have to keep its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897)  * refcount after committing with this fence, but it will need to hold a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898)  * refcount again if &dma_fence_ops.enable_signaling gets called.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900)  * context and seqno are used for easy comparison between fences, allowing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901)  * to check which fence is later by simply using dma_fence_later().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) 	       spinlock_t *lock, u64 context, u64 seqno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) 	BUG_ON(!lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) 	kref_init(&fence->refcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) 	fence->ops = ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) 	INIT_LIST_HEAD(&fence->cb_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) 	fence->lock = lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) 	fence->context = context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) 	fence->seqno = seqno;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) 	fence->flags = 0UL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) 	fence->error = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) 	trace_dma_fence_init(fence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) EXPORT_SYMBOL(dma_fence_init);