Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *  Copyright (C) 2001 Russell King
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Note: there are two erratas that apply to the SA1110 here:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *  7 - SDRAM auto-power-up failure (rev A0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * 13 - Corruption of internal register reads/writes following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *      SDRAM reads (rev A0, B0, B1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/moduleparam.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <asm/cputype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <asm/mach-types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <mach/generic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <mach/hardware.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #undef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) struct sdram_params {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	const char name[20];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	u_char  rows;		/* bits				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	u_char  cas_latency;	/* cycles			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	u_char  tck;		/* clock cycle time (ns)	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	u_char  trcd;		/* activate to r/w (ns)		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	u_char  trp;		/* precharge to activate (ns)	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	u_char  twr;		/* write recovery time (ns)	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	u_short refresh;	/* refresh time for array (us)	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) struct sdram_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	u_int	mdcnfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	u_int	mdrefr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	u_int	mdcas[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) static struct sdram_params sdram_tbl[] __initdata = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	{	/* Toshiba TC59SM716 CL2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 		.name		= "TC59SM716-CL2",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 		.rows		= 12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 		.tck		= 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 		.trcd		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 		.trp		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 		.twr		= 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 		.refresh	= 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 		.cas_latency	= 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	}, {	/* Toshiba TC59SM716 CL3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 		.name		= "TC59SM716-CL3",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 		.rows		= 12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 		.tck		= 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 		.trcd		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 		.trp		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 		.twr		= 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 		.refresh	= 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 		.cas_latency	= 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	}, {	/* Samsung K4S641632D TC75 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 		.name		= "K4S641632D",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 		.rows		= 14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 		.tck		= 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 		.trcd		= 27,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 		.trp		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 		.twr		= 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 		.refresh	= 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 		.cas_latency	= 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	}, {	/* Samsung K4S281632B-1H */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 		.name           = "K4S281632B-1H",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 		.rows		= 12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		.tck		= 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 		.trp		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 		.twr		= 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 		.refresh	= 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		.cas_latency	= 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	}, {	/* Samsung KM416S4030CT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		.name		= "KM416S4030CT",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 		.rows		= 13,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 		.tck		= 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 		.trcd		= 24,	/* 3 CLKs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 		.trp		= 24,	/* 3 CLKs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 		.twr		= 16,	/* Trdl: 2 CLKs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 		.refresh	= 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		.cas_latency	= 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	}, {	/* Winbond W982516AH75L CL3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 		.name		= "W982516AH75L",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		.rows		= 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		.tck		= 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		.trcd		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 		.trp		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		.twr		= 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 		.refresh	= 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		.cas_latency	= 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	}, {	/* Micron MT48LC8M16A2TG-75 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		.name		= "MT48LC8M16A2TG-75",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 		.rows		= 12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		.tck		= 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		.trcd		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		.trp		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		.twr		= 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		.refresh	= 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 		.cas_latency	= 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) static struct sdram_params sdram_params;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)  * Given a period in ns and frequency in khz, calculate the number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)  * cycles of frequency in period.  Note that we round up to the next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)  * cycle, even if we are only slightly over.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) static inline u_int ns_to_cycles(u_int ns, u_int khz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	return (ns * khz + 999999) / 1000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)  * Create the MDCAS register bit pattern.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	u_int shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	rcd = 2 * rcd - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	shift = delayed + 1 + rcd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	mdcas[0]  = (1 << rcd) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	mdcas[0] |= 0x55555555 << shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		       struct sdram_params *sdram)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	u_int mem_khz, sd_khz, trp, twr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	mem_khz = cpu_khz / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	sd_khz = mem_khz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	 * If SDCLK would invalidate the SDRAM timings,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	 * run SDCLK at half speed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	 * CPU steppings prior to B2 must either run the memory at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	 * half speed or use delayed read latching (errata 13).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	    (read_cpuid_revision() < ARM_CPU_REV_SA1110_B2 && sd_khz < 62000))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 		sd_khz /= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	sd->mdcnfg = MDCNFG & 0x007f007f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	twr = ns_to_cycles(sdram->twr, mem_khz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	/* trp should always be >1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	if (trp < 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		trp = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	sd->mdcnfg |= trp << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	sd->mdcnfg |= trp << 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	sd->mdcnfg |= sdram->cas_latency << 12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	sd->mdcnfg |= sdram->cas_latency << 28;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	sd->mdcnfg |= twr << 14;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	sd->mdcnfg |= twr << 30;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	sd->mdrefr = MDREFR & 0xffbffff0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	sd->mdrefr |= 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	if (sd_khz != mem_khz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 		sd->mdrefr |= MDREFR_K1DB2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	/* initial number of '1's in MDCAS + 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	set_mdcas(sd->mdcas, sd_khz >= 62000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 		ns_to_cycles(sdram->trcd, mem_khz));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		sd->mdcas[2]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)  * Set the SDRAM refresh rate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) static inline void sdram_set_refresh(u_int dri)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	(void) MDREFR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)  * Update the refresh period.  We do this such that we always refresh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)  * the SDRAMs within their permissible period.  The refresh period is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)  * always a multiple of the memory clock (fixed at cpu_clock / 2).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)  * FIXME: we don't currently take account of burst accesses here,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)  * but neither do Intels DM nor Angel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	mdelay(250);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	printk(KERN_DEBUG "new dri value = %d\n", dri);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	sdram_set_refresh(dri);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)  * Ok, set the CPU frequency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	struct sdram_params *sdram = &sdram_params;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	struct sdram_info sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	unsigned int unused;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) #if 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	 * These values are wrong according to the SA1110 documentation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	 * and errata, but they seem to work.  Need to get a storage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	 * scope on to the SDRAM signals to work out why.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	if (policy->max < 147500) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		sd.mdrefr |= MDREFR_K1DB2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 		sd.mdcas[0] = 0xaaaaaa7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 		sd.mdrefr &= ~MDREFR_K1DB2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 		sd.mdcas[0] = 0xaaaaaa9f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	sd.mdcas[1] = 0xaaaaaaaa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	sd.mdcas[2] = 0xaaaaaaaa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	 * The clock could be going away for some time.  Set the SDRAMs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	 * to refresh rapidly (every 64 memory clock cycles).  To get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	 * through the whole array, we need to wait 262144 mclk cycles.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	 * We wait 20ms to be safe.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	sdram_set_refresh(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	if (!irqs_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 		msleep(20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 		mdelay(20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	 * Reprogram the DRAM timings with interrupts disabled, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	 * ensure that we are doing this within a complete cache line.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	 * This means that we won't access SDRAM for the duration of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	 * the programming.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	udelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	__asm__ __volatile__("\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 		b	2f					\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		.align	5					\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 1:		str	%3, [%1, #0]		@ MDCNFG	\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		str	%4, [%1, #28]		@ MDREFR	\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		str	%5, [%1, #4]		@ MDCAS0	\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 		str	%6, [%1, #8]		@ MDCAS1	\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 		str	%7, [%1, #12]		@ MDCAS2	\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		str	%8, [%2, #0]		@ PPCR		\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		ldr	%0, [%1, #0]				\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 		b	3f					\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 2:		b	1b					\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 3:		nop						\n\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		nop"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 		: "=&r" (unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 		: "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		  "r" (sd.mdrefr), "r" (sd.mdcas[0]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		  "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	 * Now, return the SDRAM refresh back to normal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	cpufreq_generic_init(policy, sa11x0_freq_table, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) /* sa1110_driver needs __refdata because it must remain after init registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)  * it with cpufreq_register_driver() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) static struct cpufreq_driver sa1110_driver __refdata = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	.flags		= CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 			  CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	.verify		= cpufreq_generic_frequency_table_verify,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	.target_index	= sa1110_target,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	.get		= sa11x0_getspeed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	.init		= sa1110_cpu_init,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	.name		= "sa1110",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) static struct sdram_params *sa1110_find_sdram(const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	struct sdram_params *sdram;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	     sdram++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		if (strcmp(name, sdram->name) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 			return sdram;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) static char sdram_name[16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) static int __init sa1110_clk_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	struct sdram_params *sdram;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	const char *name = sdram_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	if (!cpu_is_sa1110())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	if (!name[0]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 		if (machine_is_assabet())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 			name = "TC59SM716-CL3";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 		if (machine_is_pt_system3())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 			name = "K4S641632D";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 		if (machine_is_h3100())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 			name = "KM416S4030CT";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 		if (machine_is_jornada720() || machine_is_h3600())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 			name = "K4S281632B-1H";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 		if (machine_is_nanoengine())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 			name = "MT48LC8M16A2TG-75";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	sdram = sa1110_find_sdram(name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	if (sdram) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 			" twr: %d refresh: %d cas_latency: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 			sdram->tck, sdram->trcd, sdram->trp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 			sdram->twr, sdram->refresh, sdram->cas_latency);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		memcpy(&sdram_params, sdram, sizeof(sdram_params));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 		return cpufreq_register_driver(&sa1110_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) arch_initcall(sa1110_clk_init);