Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * CPPC (Collaborative Processor Performance Control) driver for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * interfacing with the CPUfreq layer and governors. See
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * cppc_acpi.c for CPPC specific methods.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * (C) Copyright 2014, 2015 Linaro Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/dmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/vmalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <acpi/cppc_acpi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) /* Minimum struct length needed for the DMI processor entry we want */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) /* Offest in the DMI processor structure for the max frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define DMI_PROCESSOR_MAX_SPEED  0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * These structs contain information parsed from per CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * ACPI _CPC structures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * e.g. For each CPU the highest, lowest supported
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * performance capabilities, desired performance level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * requested etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) static struct cppc_cpudata **all_cpu_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) static bool boost_supported;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) struct cppc_workaround_oem_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	char oem_id[ACPI_OEM_ID_SIZE + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	u32 oem_revision;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) static struct cppc_workaround_oem_info wa_info[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 		.oem_id		= "HISI  ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 		.oem_table_id	= "HIP07   ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 		.oem_revision	= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	}, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 		.oem_id		= "HISI  ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 		.oem_table_id	= "HIP08   ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 		.oem_revision	= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) /* Callback function used to retrieve the max frequency from DMI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	const u8 *dmi_data = (const u8 *)dm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	u16 *mhz = (u16 *)private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	if (dm->type == DMI_ENTRY_PROCESSOR &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 		u16 val = (u16)get_unaligned((const u16 *)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 		*mhz = val > *mhz ? val : *mhz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) /* Look up the max frequency in DMI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) static u64 cppc_get_dmi_max_khz(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	u16 mhz = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	dmi_walk(cppc_find_dmi_mhz, &mhz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	 * Real stupid fallback value, just in case there is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	 * actual value set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	mhz = mhz ? mhz : 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	return (1000 * mhz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  * use them to convert perf to freq and vice versa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  * If the perf/freq point lies between Nominal and Lowest, we can treat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  * and extrapolate the rest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 					unsigned int perf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	static u64 max_khz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	struct cppc_perf_caps *caps = &cpu->perf_caps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	u64 mul, div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	if (caps->lowest_freq && caps->nominal_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		if (perf >= caps->nominal_perf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 			mul = caps->nominal_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 			div = caps->nominal_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 			mul = caps->nominal_freq - caps->lowest_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 			div = caps->nominal_perf - caps->lowest_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 		if (!max_khz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 			max_khz = cppc_get_dmi_max_khz();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		mul = max_khz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		div = caps->highest_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	return (u64)perf * mul / div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 					unsigned int freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	static u64 max_khz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	struct cppc_perf_caps *caps = &cpu->perf_caps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	u64  mul, div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	if (caps->lowest_freq && caps->nominal_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		if (freq >= caps->nominal_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 			mul = caps->nominal_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 			div = caps->nominal_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 			mul = caps->lowest_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 			div = caps->lowest_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 		if (!max_khz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 			max_khz = cppc_get_dmi_max_khz();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		mul = caps->highest_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		div = max_khz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	return (u64)freq * mul / div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		unsigned int target_freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		unsigned int relation)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	struct cppc_cpudata *cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	struct cpufreq_freqs freqs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	u32 desired_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	cpu = all_cpu_data[policy->cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	/* Return if it is exactly the same perf */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	if (desired_perf == cpu->perf_ctrls.desired_perf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	cpu->perf_ctrls.desired_perf = desired_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	freqs.old = policy->cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	freqs.new = target_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	cpufreq_freq_transition_begin(policy, &freqs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 				cpu->cpu, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) static int cppc_verify_policy(struct cpufreq_policy_data *policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	cpufreq_verify_within_cpu_limits(policy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	int cpu_num = policy->cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 				cpu->perf_caps.lowest_perf, cpu_num, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)  * The PCC subspace describes the rate at which platform can accept commands
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)  * on the shared PCC channel (including READs which do not count towards freq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)  * trasition requests), so ideally we need to use the PCC values as a fallback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)  * if we don't have a platform specific transition_delay_us
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) #ifdef CONFIG_ARM64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) #include <asm/cputype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	unsigned long implementor = read_cpuid_implementor();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	unsigned long part_num = read_cpuid_part_number();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	unsigned int delay_us = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	switch (implementor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	case ARM_CPU_IMP_QCOM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		switch (part_num) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		case QCOM_CPU_PART_FALKOR_V1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 		case QCOM_CPU_PART_FALKOR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 			delay_us = 10000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 			delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	return delay_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	struct cppc_cpudata *cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	unsigned int cpu_num = policy->cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	cpu = all_cpu_data[policy->cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	cpu->cpu = cpu_num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 				cpu_num, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	/* Convert the lowest and nominal freq from MHz to KHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	cpu->perf_caps.lowest_freq *= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	cpu->perf_caps.nominal_freq *= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	 * available if userspace wants to use any perf between lowest & lowest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	 * nonlinear perf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	policy->shared_type = cpu->shared_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		cpumask_copy(policy->cpus, cpu->shared_cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 		for_each_cpu(i, policy->cpus) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 			if (unlikely(i == policy->cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 			memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 			       sizeof(cpu->perf_caps));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	} else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		/* Support only SW_ANY for now. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 		pr_debug("Unsupported CPU co-ord type\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	cpu->cur_policy = policy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	 * is supported.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	if (cpu->perf_caps.highest_perf > cpu->perf_caps.nominal_perf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		boost_supported = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	/* Set policy->cur to max now. The governors will adjust later. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	policy->cur = cppc_cpufreq_perf_to_khz(cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 					cpu->perf_caps.highest_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 				cpu->perf_caps.highest_perf, cpu_num, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) static inline u64 get_delta(u64 t1, u64 t0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	if (t1 > t0 || t0 > ~(u32)0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		return t1 - t0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	return (u32)t1 - (u32)t0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 				     struct cppc_perf_fb_ctrs fb_ctrs_t0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 				     struct cppc_perf_fb_ctrs fb_ctrs_t1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	u64 delta_reference, delta_delivered;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	u64 reference_perf, delivered_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	reference_perf = fb_ctrs_t0.reference_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	delta_reference = get_delta(fb_ctrs_t1.reference,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 				    fb_ctrs_t0.reference);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	delta_delivered = get_delta(fb_ctrs_t1.delivered,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 				    fb_ctrs_t0.delivered);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	/* Check to avoid divide-by zero */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	if (delta_reference || delta_delivered)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 		delivered_perf = (reference_perf * delta_delivered) /
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 					delta_reference;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 		delivered_perf = cpu->perf_ctrls.desired_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	struct cppc_cpudata *cpu = all_cpu_data[cpunum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	udelay(2); /* 2usec delay between sampling */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	struct cppc_cpudata *cpudata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	if (!boost_supported) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		pr_err("BOOST not supported by CPU or firmware\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	cpudata = all_cpu_data[policy->cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	if (state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 		policy->max = cppc_cpufreq_perf_to_khz(cpudata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 					cpudata->perf_caps.highest_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 		policy->max = cppc_cpufreq_perf_to_khz(cpudata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 					cpudata->perf_caps.nominal_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	policy->cpuinfo.max_freq = policy->max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) static struct cpufreq_driver cppc_cpufreq_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	.flags = CPUFREQ_CONST_LOOPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	.verify = cppc_verify_policy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	.target = cppc_cpufreq_set_target,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	.get = cppc_cpufreq_get_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	.init = cppc_cpufreq_cpu_init,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	.stop_cpu = cppc_cpufreq_stop_cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	.set_boost = cppc_cpufreq_set_boost,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	.name = "cppc_cpufreq",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410)  * HISI platform does not support delivered performance counter and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411)  * reference performance counter. It can calculate the performance using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)  * platform specific mechanism. We reuse the desired performance register to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)  * store the real performance calculated by the platform.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	u64 desired_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	ret = cppc_get_desired_perf(cpunum, &desired_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) static void cppc_check_hisi_workaround(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	struct acpi_table_header *tbl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	acpi_status status = AE_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	if (ACPI_FAILURE(status) || !tbl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 		    wa_info[i].oem_revision == tbl->oem_revision) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 			/* Overwrite the get() callback */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 			cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	acpi_put_table(tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) static int __init cppc_cpufreq_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	int i, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	struct cppc_cpudata *cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	if (acpi_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 			       GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	if (!all_cpu_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 		all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 		if (!all_cpu_data[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 		cpu = all_cpu_data[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 		if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	ret = acpi_get_psd_map(all_cpu_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 		pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	cppc_check_hisi_workaround();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 		cpu = all_cpu_data[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 		if (!cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 		free_cpumask_var(cpu->shared_cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 		kfree(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	kfree(all_cpu_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) static void __exit cppc_cpufreq_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	struct cppc_cpudata *cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	cpufreq_unregister_driver(&cppc_cpufreq_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		cpu = all_cpu_data[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 		free_cpumask_var(cpu->shared_cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 		kfree(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	kfree(all_cpu_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) module_exit(cppc_cpufreq_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) MODULE_AUTHOR("Ashwin Chaugule");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) late_initcall(cppc_cpufreq_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) static const struct acpi_device_id cppc_acpi_ids[] __used = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	{ACPI_PROCESSOR_DEVICE_HID, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	{}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);