Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * STM32 Timer Encoder and Counter driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) STMicroelectronics 2018
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/counter.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/mfd/stm32-timers.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/mod_devicetable.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/pinctrl/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) struct stm32_timer_regs {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	u32 cr1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 	u32 cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 	u32 smcr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 	u32 arr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) struct stm32_timer_cnt {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 	struct counter_device counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	u32 max_arr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	bool enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	struct stm32_timer_regs bak;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * enum stm32_count_function - enumerates stm32 timer counter encoder modes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * @STM32_COUNT_SLAVE_MODE_DISABLED: counts on internal clock when CEN=1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * @STM32_COUNT_ENCODER_MODE_1: counts TI1FP1 edges, depending on TI2FP2 level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * @STM32_COUNT_ENCODER_MODE_2: counts TI2FP2 edges, depending on TI1FP1 level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * @STM32_COUNT_ENCODER_MODE_3: counts on both TI1FP1 and TI2FP2 edges
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) enum stm32_count_function {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	STM32_COUNT_SLAVE_MODE_DISABLED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	STM32_COUNT_ENCODER_MODE_1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	STM32_COUNT_ENCODER_MODE_2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	STM32_COUNT_ENCODER_MODE_3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) static enum counter_count_function stm32_count_functions[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	[STM32_COUNT_SLAVE_MODE_DISABLED] = COUNTER_COUNT_FUNCTION_INCREASE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	[STM32_COUNT_ENCODER_MODE_1] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_A,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	[STM32_COUNT_ENCODER_MODE_2] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_B,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	[STM32_COUNT_ENCODER_MODE_3] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) static int stm32_count_read(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 			    struct counter_count *count, unsigned long *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	u32 cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	regmap_read(priv->regmap, TIM_CNT, &cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	*val = cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) static int stm32_count_write(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 			     struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 			     const unsigned long val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	u32 ceiling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	regmap_read(priv->regmap, TIM_ARR, &ceiling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	if (val > ceiling)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	return regmap_write(priv->regmap, TIM_CNT, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) static int stm32_count_function_get(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 				    struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 				    size_t *function)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	u32 smcr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	regmap_read(priv->regmap, TIM_SMCR, &smcr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	switch (smcr & TIM_SMCR_SMS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		*function = STM32_COUNT_SLAVE_MODE_DISABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		*function = STM32_COUNT_ENCODER_MODE_1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 		*function = STM32_COUNT_ENCODER_MODE_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		*function = STM32_COUNT_ENCODER_MODE_3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) static int stm32_count_function_set(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 				    struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 				    size_t function)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	u32 cr1, sms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	switch (function) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	case STM32_COUNT_SLAVE_MODE_DISABLED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		sms = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	case STM32_COUNT_ENCODER_MODE_1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		sms = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	case STM32_COUNT_ENCODER_MODE_2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		sms = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	case STM32_COUNT_ENCODER_MODE_3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		sms = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	/* Store enable status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	regmap_read(priv->regmap, TIM_CR1, &cr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	/* Make sure that registers are updated */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	/* Restore the enable status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) static ssize_t stm32_count_direction_read(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 				      struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 				      void *private, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	const char *direction;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	u32 cr1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	regmap_read(priv->regmap, TIM_CR1, &cr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	direction = (cr1 & TIM_CR1_DIR) ? "backward" : "forward";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	return scnprintf(buf, PAGE_SIZE, "%s\n", direction);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) static ssize_t stm32_count_ceiling_read(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 					struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 					void *private, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	u32 arr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	regmap_read(priv->regmap, TIM_ARR, &arr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	return snprintf(buf, PAGE_SIZE, "%u\n", arr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 					 struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 					 void *private,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 					 const char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	unsigned int ceiling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	ret = kstrtouint(buf, 0, &ceiling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	if (ceiling > priv->max_arr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 		return -ERANGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	regmap_write(priv->regmap, TIM_ARR, ceiling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) static ssize_t stm32_count_enable_read(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 				       struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 				       void *private, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	u32 cr1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	regmap_read(priv->regmap, TIM_CR1, &cr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)(cr1 & TIM_CR1_CEN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) static ssize_t stm32_count_enable_write(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 					struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 					void *private,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 					const char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	struct stm32_timer_cnt *const priv = counter->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	u32 cr1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	bool enable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	err = kstrtobool(buf, &enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	if (enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 		regmap_read(priv->regmap, TIM_CR1, &cr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		if (!(cr1 & TIM_CR1_CEN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 			clk_enable(priv->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 				   TIM_CR1_CEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 		regmap_read(priv->regmap, TIM_CR1, &cr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 		if (cr1 & TIM_CR1_CEN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 			clk_disable(priv->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	/* Keep enabled state to properly handle low power states */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	priv->enabled = enable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) static const struct counter_count_ext stm32_count_ext[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		.name = "direction",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		.read = stm32_count_direction_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		.name = "enable",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		.read = stm32_count_enable_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		.write = stm32_count_enable_write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 		.name = "ceiling",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		.read = stm32_count_ceiling_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 		.write = stm32_count_ceiling_write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) enum stm32_synapse_action {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	STM32_SYNAPSE_ACTION_NONE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	STM32_SYNAPSE_ACTION_BOTH_EDGES
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) static enum counter_synapse_action stm32_synapse_actions[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	[STM32_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	[STM32_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) static int stm32_action_get(struct counter_device *counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 			    struct counter_count *count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 			    struct counter_synapse *synapse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 			    size_t *action)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	size_t function;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	err = stm32_count_function_get(counter, count, &function);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	switch (function) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	case STM32_COUNT_SLAVE_MODE_DISABLED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		/* counts on internal clock when CEN=1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 		*action = STM32_SYNAPSE_ACTION_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	case STM32_COUNT_ENCODER_MODE_1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		if (synapse->signal->id == count->synapses[0].signal->id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 			*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 			*action = STM32_SYNAPSE_ACTION_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	case STM32_COUNT_ENCODER_MODE_2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		if (synapse->signal->id == count->synapses[1].signal->id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 			*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 			*action = STM32_SYNAPSE_ACTION_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	case STM32_COUNT_ENCODER_MODE_3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 		/* counts up/down on both TI1FP1 and TI2FP2 edges */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 		*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) static const struct counter_ops stm32_timer_cnt_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	.count_read = stm32_count_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	.count_write = stm32_count_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	.function_get = stm32_count_function_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	.function_set = stm32_count_function_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	.action_get = stm32_action_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) static struct counter_signal stm32_signals[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 		.id = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 		.name = "Channel 1 Quadrature A"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		.id = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 		.name = "Channel 1 Quadrature B"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) static struct counter_synapse stm32_count_synapses[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 		.actions_list = stm32_synapse_actions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 		.signal = &stm32_signals[0]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		.actions_list = stm32_synapse_actions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 		.signal = &stm32_signals[1]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) static struct counter_count stm32_counts = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	.id = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	.name = "Channel 1 Count",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	.functions_list = stm32_count_functions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	.num_functions = ARRAY_SIZE(stm32_count_functions),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	.synapses = stm32_count_synapses,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	.ext = stm32_count_ext,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	.num_ext = ARRAY_SIZE(stm32_count_ext)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) static int stm32_timer_cnt_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	struct stm32_timer_cnt *priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	if (IS_ERR_OR_NULL(ddata))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	if (!priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	priv->regmap = ddata->regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	priv->clk = ddata->clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	priv->max_arr = ddata->max_arr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	priv->counter.name = dev_name(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	priv->counter.parent = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	priv->counter.ops = &stm32_timer_cnt_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	priv->counter.counts = &stm32_counts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	priv->counter.num_counts = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	priv->counter.signals = stm32_signals;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	priv->counter.num_signals = ARRAY_SIZE(stm32_signals);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	priv->counter.priv = priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	platform_set_drvdata(pdev, priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	/* Register Counter device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	return devm_counter_register(dev, &priv->counter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	/* Only take care of enabled counter: don't disturb other MFD child */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	if (priv->enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 		/* Backup registers that may get lost in low power mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 		/* Disable the counter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 		clk_disable(priv->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	return pinctrl_pm_select_sleep_state(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	ret = pinctrl_pm_select_default_state(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	if (priv->enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		clk_enable(priv->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 		/* Restore registers that may have been lost */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 		/* Also re-enables the counter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 			 stm32_timer_cnt_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) static const struct of_device_id stm32_timer_cnt_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	{ .compatible = "st,stm32-timer-counter", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	{},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) static struct platform_driver stm32_timer_cnt_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	.probe = stm32_timer_cnt_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 		.name = "stm32-timer-counter",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 		.of_match_table = stm32_timer_cnt_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 		.pm = &stm32_timer_cnt_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) module_platform_driver(stm32_timer_cnt_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) MODULE_ALIAS("platform:stm32-timer-counter");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) MODULE_LICENSE("GPL v2");