Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright 2012-2013 Freescale Semiconductor, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include <linux/clockchips.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/of_address.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/of_irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/sched_clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * Each pit takes 0x10 Bytes register space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #define PITMCR		0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #define PIT0_OFFSET	0x100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #define PITn_OFFSET(n)	(PIT0_OFFSET + 0x10 * (n))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #define PITLDVAL	0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define PITCVAL		0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define PITTCTRL	0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define PITTFLG		0x0c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define PITMCR_MDIS	(0x1 << 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define PITTCTRL_TEN	(0x1 << 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define PITTCTRL_TIE	(0x1 << 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define PITCTRL_CHN	(0x1 << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define PITTFLG_TIF	0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) static void __iomem *clksrc_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) static void __iomem *clkevt_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) static unsigned long cycle_per_jiffy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) static inline void pit_timer_enable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	__raw_writel(PITTCTRL_TEN | PITTCTRL_TIE, clkevt_base + PITTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) static inline void pit_timer_disable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	__raw_writel(0, clkevt_base + PITTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) static inline void pit_irq_acknowledge(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	__raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) static u64 notrace pit_read_sched_clock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	return ~__raw_readl(clksrc_base + PITCVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) static int __init pit_clocksource_init(unsigned long rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	/* set the max load value and start the clock source counter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	__raw_writel(0, clksrc_base + PITTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	__raw_writel(~0UL, clksrc_base + PITLDVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	__raw_writel(PITTCTRL_TEN, clksrc_base + PITTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	sched_clock_register(pit_read_sched_clock, 32, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	return clocksource_mmio_init(clksrc_base + PITCVAL, "vf-pit", rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 			300, 32, clocksource_mmio_readl_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) static int pit_set_next_event(unsigned long delta,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 				struct clock_event_device *unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	 * set a new value to PITLDVAL register will not restart the timer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	 * to abort the current cycle and start a timer period with the new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	 * value, the timer must be disabled and enabled again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	 * and the PITLAVAL should be set to delta minus one according to pit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	 * hardware requirement.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	pit_timer_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	__raw_writel(delta - 1, clkevt_base + PITLDVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	pit_timer_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) static int pit_shutdown(struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	pit_timer_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) static int pit_set_periodic(struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	pit_set_next_event(cycle_per_jiffy, evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	struct clock_event_device *evt = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	pit_irq_acknowledge();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	 * pit hardware doesn't support oneshot, it will generate an interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	 * and reload the counter value from PITLDVAL when PITCVAL reach zero,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	 * and start the counter again. So software need to disable the timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	 * to stop the counter loop in ONESHOT mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	if (likely(clockevent_state_oneshot(evt)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		pit_timer_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	evt->event_handler(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) static struct clock_event_device clockevent_pit = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	.name		= "VF pit timer",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	.set_state_shutdown = pit_shutdown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	.set_state_periodic = pit_set_periodic,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	.set_next_event	= pit_set_next_event,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	.rating		= 300,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) static int __init pit_clockevent_init(unsigned long rate, int irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	__raw_writel(0, clkevt_base + PITTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	__raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	BUG_ON(request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 			   "VF pit timer", &clockevent_pit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	clockevent_pit.cpumask = cpumask_of(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	clockevent_pit.irq = irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	 * The value for the LDVAL register trigger is calculated as:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	 * LDVAL trigger = (period / clock period) - 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	 * The pit is a 32-bit down count timer, when the conter value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	 * reaches 0, it will generate an interrupt, thus the minimal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	 * LDVAL trigger value is 1. And then the min_delta is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	 * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	clockevents_config_and_register(&clockevent_pit, rate, 2, 0xffffffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) static int __init pit_timer_init(struct device_node *np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	struct clk *pit_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	void __iomem *timer_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	unsigned long clk_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	int irq, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	timer_base = of_iomap(np, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	if (!timer_base) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 		pr_err("Failed to iomap\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 		return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	 * PIT0 and PIT1 can be chained to build a 64-bit timer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	 * so choose PIT2 as clocksource, PIT3 as clockevent device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	 * and leave PIT0 and PIT1 unused for anyone else who needs them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	clksrc_base = timer_base + PITn_OFFSET(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	clkevt_base = timer_base + PITn_OFFSET(3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	irq = irq_of_parse_and_map(np, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	if (irq <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	pit_clk = of_clk_get(np, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	if (IS_ERR(pit_clk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		return PTR_ERR(pit_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	ret = clk_prepare_enable(pit_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	clk_rate = clk_get_rate(pit_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	cycle_per_jiffy = clk_rate / (HZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	/* enable the pit module */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	__raw_writel(~PITMCR_MDIS, timer_base + PITMCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	ret = pit_clocksource_init(clk_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	return pit_clockevent_init(clk_rate, irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);