^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Faraday Technology FTTMR010 timer driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Based on a rewrite of arch/arm/mach-gemini/timer.c:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (C) 2001-2006 Storlink, Corp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/of_address.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/of_irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/clockchips.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/clocksource.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/sched_clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * Register definitions common for all the timer variants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define TIMER1_COUNT (0x00)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #define TIMER1_LOAD (0x04)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define TIMER1_MATCH1 (0x08)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define TIMER1_MATCH2 (0x0c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define TIMER2_COUNT (0x10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define TIMER2_LOAD (0x14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define TIMER2_MATCH1 (0x18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define TIMER2_MATCH2 (0x1c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define TIMER3_COUNT (0x20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define TIMER3_LOAD (0x24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define TIMER3_MATCH1 (0x28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define TIMER3_MATCH2 (0x2c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define TIMER_CR (0x30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * Control register set to clear for ast2600 only.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define AST2600_TIMER_CR_CLR (0x3c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define TIMER_1_CR_ENABLE BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define TIMER_1_CR_CLOCK BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #define TIMER_1_CR_INT BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define TIMER_2_CR_ENABLE BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #define TIMER_2_CR_CLOCK BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define TIMER_2_CR_INT BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #define TIMER_3_CR_ENABLE BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define TIMER_3_CR_CLOCK BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #define TIMER_3_CR_INT BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #define TIMER_1_CR_UPDOWN BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #define TIMER_2_CR_UPDOWN BIT(10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #define TIMER_3_CR_UPDOWN BIT(11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * The aspeed timers move bits around in the control register and lacks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * bits for setting the timer to count upwards.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #define TIMER_1_CR_ASPEED_ENABLE BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #define TIMER_1_CR_ASPEED_CLOCK BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #define TIMER_1_CR_ASPEED_INT BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #define TIMER_2_CR_ASPEED_ENABLE BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #define TIMER_2_CR_ASPEED_CLOCK BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define TIMER_2_CR_ASPEED_INT BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #define TIMER_3_CR_ASPEED_ENABLE BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #define TIMER_3_CR_ASPEED_CLOCK BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) #define TIMER_3_CR_ASPEED_INT BIT(10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) * Interrupt status/mask register definitions for fttmr010/gemini/moxart
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) * timers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) * The registers don't exist and they are not needed on aspeed timers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * because:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) * - aspeed timer overflow interrupt is controlled by bits in Control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) * Register (TMC30).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) * - aspeed timers always generate interrupt when either one of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) * Match registers equals to Status register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) #define TIMER_INTR_STATE (0x34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) #define TIMER_INTR_MASK (0x38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) #define TIMER_1_INT_MATCH1 BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) #define TIMER_1_INT_MATCH2 BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) #define TIMER_1_INT_OVERFLOW BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) #define TIMER_2_INT_MATCH1 BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) #define TIMER_2_INT_MATCH2 BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) #define TIMER_2_INT_OVERFLOW BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #define TIMER_3_INT_MATCH1 BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) #define TIMER_3_INT_MATCH2 BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #define TIMER_3_INT_OVERFLOW BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) #define TIMER_INT_ALL_MASK 0x1ff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) struct fttmr010 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) unsigned int tick_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) bool is_aspeed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) u32 t1_enable_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) struct clock_event_device clkevt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) int (*timer_shutdown)(struct clock_event_device *evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) #ifdef CONFIG_ARM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) struct delay_timer delay_timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) * A local singleton used by sched_clock and delay timer reads, which are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) * fast and stateless
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) static struct fttmr010 *local_fttmr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) return container_of(evt, struct fttmr010, clkevt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) static unsigned long fttmr010_read_current_timer_up(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) return readl(local_fttmr->base + TIMER2_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) static unsigned long fttmr010_read_current_timer_down(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) return ~readl(local_fttmr->base + TIMER2_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) static u64 notrace fttmr010_read_sched_clock_up(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) return fttmr010_read_current_timer_up();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) static u64 notrace fttmr010_read_sched_clock_down(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) return fttmr010_read_current_timer_down();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static int fttmr010_timer_set_next_event(unsigned long cycles,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) struct fttmr010 *fttmr010 = to_fttmr010(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) u32 cr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) /* Stop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) fttmr010->timer_shutdown(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) if (fttmr010->is_aspeed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * ASPEED Timer Controller will load TIMER1_LOAD register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * into TIMER1_COUNT register when the timer is re-enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) writel(cycles, fttmr010->base + TIMER1_LOAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) /* Setup the match register forward in time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) cr = readl(fttmr010->base + TIMER1_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) /* Start */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) cr = readl(fttmr010->base + TIMER_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) cr |= fttmr010->t1_enable_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) writel(cr, fttmr010->base + TIMER_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) static int ast2600_timer_shutdown(struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) struct fttmr010 *fttmr010 = to_fttmr010(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) /* Stop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) static int fttmr010_timer_shutdown(struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) struct fttmr010 *fttmr010 = to_fttmr010(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) u32 cr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) /* Stop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) cr = readl(fttmr010->base + TIMER_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) cr &= ~fttmr010->t1_enable_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) writel(cr, fttmr010->base + TIMER_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) struct fttmr010 *fttmr010 = to_fttmr010(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) u32 cr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) /* Stop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) fttmr010->timer_shutdown(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) /* Setup counter start from 0 or ~0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) writel(0, fttmr010->base + TIMER1_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) if (fttmr010->is_aspeed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) writel(~0, fttmr010->base + TIMER1_LOAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) writel(0, fttmr010->base + TIMER1_LOAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) /* Enable interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) cr = readl(fttmr010->base + TIMER_INTR_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) cr |= TIMER_1_INT_MATCH1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) writel(cr, fttmr010->base + TIMER_INTR_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) struct fttmr010 *fttmr010 = to_fttmr010(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) u32 cr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) /* Stop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) fttmr010->timer_shutdown(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) /* Setup timer to fire at 1/HZ intervals. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) if (fttmr010->is_aspeed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) writel(period, fttmr010->base + TIMER1_LOAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) cr = 0xffffffff - (period - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) writel(cr, fttmr010->base + TIMER1_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) writel(cr, fttmr010->base + TIMER1_LOAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) /* Enable interrupt on overflow */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) cr = readl(fttmr010->base + TIMER_INTR_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) cr |= TIMER_1_INT_OVERFLOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) writel(cr, fttmr010->base + TIMER_INTR_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) /* Start the timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) cr = readl(fttmr010->base + TIMER_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) cr |= fttmr010->t1_enable_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) writel(cr, fttmr010->base + TIMER_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) * IRQ handler for the timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) struct clock_event_device *evt = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) evt->event_handler(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) struct clock_event_device *evt = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) struct fttmr010 *fttmr010 = to_fttmr010(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) writel(0x1, fttmr010->base + TIMER_INTR_STATE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) evt->event_handler(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) static int __init fttmr010_common_init(struct device_node *np,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) bool is_aspeed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) int (*timer_shutdown)(struct clock_event_device *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) irq_handler_t irq_handler)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) struct fttmr010 *fttmr010;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) * These implementations require a clock reference.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * FIXME: we currently only support clocking using PCLK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) * and using EXTCLK is not supported in the driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) clk = of_clk_get_by_name(np, "PCLK");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) if (IS_ERR(clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) pr_err("could not get PCLK\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) return PTR_ERR(clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) ret = clk_prepare_enable(clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) pr_err("failed to enable PCLK\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) if (!fttmr010) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) goto out_disable_clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) fttmr010->tick_rate = clk_get_rate(clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) fttmr010->base = of_iomap(np, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) if (!fttmr010->base) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) pr_err("Can't remap registers\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) ret = -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) /* IRQ for timer 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) irq = irq_of_parse_and_map(np, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) if (irq <= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) pr_err("Can't parse IRQ\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) goto out_unmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) * The Aspeed timers move bits around in the control register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) if (is_aspeed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) TIMER_1_CR_ASPEED_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) fttmr010->is_aspeed = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) * Reset the interrupt mask and status
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) writel(0, fttmr010->base + TIMER_INTR_STATE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) * Enable timer 1 count up, timer 2 count up, except on Aspeed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) * where everything just counts down.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) if (is_aspeed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) val = TIMER_2_CR_ASPEED_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) TIMER_2_CR_UPDOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) writel(val, fttmr010->base + TIMER_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) * Setup free-running clocksource timer (interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) * disabled.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) local_fttmr = fttmr010;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) writel(0, fttmr010->base + TIMER2_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) writel(0, fttmr010->base + TIMER2_MATCH1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) writel(0, fttmr010->base + TIMER2_MATCH2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) if (fttmr010->is_aspeed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) writel(~0, fttmr010->base + TIMER2_LOAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) "FTTMR010-TIMER2",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) fttmr010->tick_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 300, 32, clocksource_mmio_readl_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) sched_clock_register(fttmr010_read_sched_clock_down, 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) fttmr010->tick_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) writel(0, fttmr010->base + TIMER2_LOAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) "FTTMR010-TIMER2",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) fttmr010->tick_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 300, 32, clocksource_mmio_readl_up);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) sched_clock_register(fttmr010_read_sched_clock_up, 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) fttmr010->tick_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) fttmr010->timer_shutdown = timer_shutdown;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) * Setup clockevent timer (interrupt-driven) on timer 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) writel(0, fttmr010->base + TIMER1_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) writel(0, fttmr010->base + TIMER1_LOAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) writel(0, fttmr010->base + TIMER1_MATCH1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) writel(0, fttmr010->base + TIMER1_MATCH2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) ret = request_irq(irq, irq_handler, IRQF_TIMER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) "FTTMR010-TIMER1", &fttmr010->clkevt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) pr_err("FTTMR010-TIMER1 no IRQ\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) goto out_unmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) fttmr010->clkevt.name = "FTTMR010-TIMER1";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) /* Reasonably fast and accurate clock event */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) fttmr010->clkevt.rating = 300;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) CLOCK_EVT_FEAT_ONESHOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) fttmr010->clkevt.cpumask = cpumask_of(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) fttmr010->clkevt.irq = irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) clockevents_config_and_register(&fttmr010->clkevt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) fttmr010->tick_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 1, 0xffffffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) #ifdef CONFIG_ARM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) /* Also use this timer for delays */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) if (fttmr010->is_aspeed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) fttmr010->delay_timer.read_current_timer =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) fttmr010_read_current_timer_down;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) fttmr010->delay_timer.read_current_timer =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) fttmr010_read_current_timer_up;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) fttmr010->delay_timer.freq = fttmr010->tick_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) register_current_timer_delay(&fttmr010->delay_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) out_unmap:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) iounmap(fttmr010->base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) out_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) kfree(fttmr010);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) out_disable_clock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) clk_disable_unprepare(clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) static __init int ast2600_timer_init(struct device_node *np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) return fttmr010_common_init(np, true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) ast2600_timer_shutdown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) ast2600_timer_interrupt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) static __init int aspeed_timer_init(struct device_node *np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) return fttmr010_common_init(np, true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) fttmr010_timer_shutdown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) fttmr010_timer_interrupt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) static __init int fttmr010_timer_init(struct device_node *np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) return fttmr010_common_init(np, false,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) fttmr010_timer_shutdown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) fttmr010_timer_interrupt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);