Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * R-Car Gen3 Clock Pulse Generator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2015-2018 Glider bvba
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 2019 Renesas Electronics Corp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Based on clk-rcar-gen3.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Copyright (C) 2015 Renesas Electronics Corp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/bug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/bitfield.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/clk-provider.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/pm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/sys_soc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include "renesas-cpg-mssr.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include "rcar-gen3-cpg.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define CPG_PLL0CR		0x00d8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define CPG_PLL2CR		0x002c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define CPG_PLL4CR		0x01f4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define CPG_RCKCR_CKSEL	BIT(15)	/* RCLK Clock Source Select */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) static spinlock_t cpg_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) static void cpg_reg_modify(void __iomem *reg, u32 clear, u32 set)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	spin_lock_irqsave(&cpg_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	val = readl(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	val &= ~clear;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	val |= set;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	writel(val, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	spin_unlock_irqrestore(&cpg_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) struct cpg_simple_notifier {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	struct notifier_block nb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	void __iomem *reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	u32 saved;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) static int cpg_simple_notifier_call(struct notifier_block *nb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 				    unsigned long action, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	struct cpg_simple_notifier *csn =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 		container_of(nb, struct cpg_simple_notifier, nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	switch (action) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	case PM_EVENT_SUSPEND:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 		csn->saved = readl(csn->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 		return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	case PM_EVENT_RESUME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 		writel(csn->saved, csn->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 		return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) static void cpg_simple_notifier_register(struct raw_notifier_head *notifiers,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 					 struct cpg_simple_notifier *csn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	csn->nb.notifier_call = cpg_simple_notifier_call;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	raw_notifier_chain_register(notifiers, &csn->nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  * Z Clock & Z2 Clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  * Traits of this clock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  * prepare - clk_prepare only ensures that parents are prepared
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * enable - clk_enable only ensures that parents are enabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * rate - rate is adjustable.  clk->rate = (parent->rate * mult / 32 ) / 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  * parent - fixed parent.  No clk_set_parent support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) #define CPG_FRQCRB			0x00000004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) #define CPG_FRQCRB_KICK			BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) #define CPG_FRQCRC			0x000000e0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) struct cpg_z_clk {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	void __iomem *reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	void __iomem *kick_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	unsigned long mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	unsigned int fixed_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define to_z_clk(_hw)	container_of(_hw, struct cpg_z_clk, hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 					   unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	struct cpg_z_clk *zclk = to_z_clk(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	unsigned int mult;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	val = readl(zclk->reg) & zclk->mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	mult = 32 - (val >> __ffs(zclk->mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 				     32 * zclk->fixed_div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) static int cpg_z_clk_determine_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 				    struct clk_rate_request *req)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	struct cpg_z_clk *zclk = to_z_clk(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	unsigned int min_mult, max_mult, mult;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	unsigned long prate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	prate = req->best_parent_rate / zclk->fixed_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	if (max_mult < min_mult)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	mult = div64_ul(req->rate * 32ULL, prate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	mult = clamp(mult, min_mult, max_mult);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	req->rate = div_u64((u64)prate * mult, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 			      unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	struct cpg_z_clk *zclk = to_z_clk(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	unsigned int mult;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 				       parent_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	mult = clamp(mult, 1U, 32U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	cpg_reg_modify(zclk->reg, zclk->mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 		       ((32 - mult) << __ffs(zclk->mask)) & zclk->mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	 * Set KICK bit in FRQCRB to update hardware setting and wait for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	 * clock change completion.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	 * Note: There is no HW information about the worst case latency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	 * Using experimental measurements, it seems that no more than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	 * ~10 iterations are needed, independently of the CPU rate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	 * Since this value might be dependent of external xtal rate, pll1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	 * rate or even the other emulation clocks rate, use 1000 as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	 * "super" safe value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	for (i = 1000; i; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) static const struct clk_ops cpg_z_clk_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	.recalc_rate = cpg_z_clk_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	.determine_rate = cpg_z_clk_determine_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	.set_rate = cpg_z_clk_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) static struct clk * __init cpg_z_clk_register(const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 					      const char *parent_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 					      void __iomem *reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 					      unsigned int div,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 					      unsigned int offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	struct clk_init_data init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	struct cpg_z_clk *zclk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	if (!zclk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	init.name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	init.ops = &cpg_z_clk_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	init.flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	init.parent_names = &parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	zclk->reg = reg + CPG_FRQCRC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	zclk->kick_reg = reg + CPG_FRQCRB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	zclk->hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	zclk->mask = GENMASK(offset + 4, offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	clk = clk_register(NULL, &zclk->hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	if (IS_ERR(clk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		kfree(zclk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	return clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)  * SDn Clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) #define CPG_SD_STP_HCK		BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) #define CPG_SD_STP_CK		BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) #define CPG_SD_STP_MASK		(CPG_SD_STP_HCK | CPG_SD_STP_CK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) #define CPG_SD_FC_MASK		(0x7 << 2 | 0x3 << 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) #define CPG_SD_DIV_TABLE_DATA(stp_hck, stp_ck, sd_srcfc, sd_fc, sd_div) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	.val = ((stp_hck) ? CPG_SD_STP_HCK : 0) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	       ((stp_ck) ? CPG_SD_STP_CK : 0) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	       ((sd_srcfc) << 2) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	       ((sd_fc) << 0), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	.div = (sd_div), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) struct sd_div_table {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	unsigned int div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) struct sd_clock {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	const struct sd_div_table *div_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	struct cpg_simple_notifier csn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	unsigned int div_num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	unsigned int cur_div_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) /* SDn divider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)  *                     sd_srcfc   sd_fc   div
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)  * stp_hck   stp_ck    (div)      (div)     = sd_srcfc x sd_fc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)  *-------------------------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)  *  0         0         0 (1)      1 (4)      4 : SDR104 / HS200 / HS400 (8 TAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)  *  0         0         1 (2)      1 (4)      8 : SDR50
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)  *  1         0         2 (4)      1 (4)     16 : HS / SDR25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)  *  1         0         3 (8)      1 (4)     32 : NS / SDR12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)  *  1         0         4 (16)     1 (4)     64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)  *  0         0         0 (1)      0 (2)      2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)  *  0         0         1 (2)      0 (2)      4 : SDR104 / HS200 / HS400 (4 TAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)  *  1         0         2 (4)      0 (2)      8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)  *  1         0         3 (8)      0 (2)     16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262)  *  1         0         4 (16)     0 (2)     32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)  *  NOTE: There is a quirk option to ignore the first row of the dividers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)  *  table when searching for suitable settings. This is because HS400 on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)  *  early ES versions of H3 and M3-W requires a specific setting to work.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) static const struct sd_div_table cpg_sd_div_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) /*	CPG_SD_DIV_TABLE_DATA(stp_hck,  stp_ck,   sd_srcfc,   sd_fc,  sd_div) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	CPG_SD_DIV_TABLE_DATA(0,        0,        0,          1,        4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	CPG_SD_DIV_TABLE_DATA(0,        0,        1,          1,        8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	CPG_SD_DIV_TABLE_DATA(1,        0,        2,          1,       16),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	CPG_SD_DIV_TABLE_DATA(1,        0,        3,          1,       32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	CPG_SD_DIV_TABLE_DATA(1,        0,        4,          1,       64),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	CPG_SD_DIV_TABLE_DATA(0,        0,        0,          0,        2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	CPG_SD_DIV_TABLE_DATA(0,        0,        1,          0,        4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	CPG_SD_DIV_TABLE_DATA(1,        0,        2,          0,        8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	CPG_SD_DIV_TABLE_DATA(1,        0,        3,          0,       16),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	CPG_SD_DIV_TABLE_DATA(1,        0,        4,          0,       32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) #define to_sd_clock(_hw) container_of(_hw, struct sd_clock, hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) static int cpg_sd_clock_enable(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	struct sd_clock *clock = to_sd_clock(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	cpg_reg_modify(clock->csn.reg, CPG_SD_STP_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		       clock->div_table[clock->cur_div_idx].val &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 		       CPG_SD_STP_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) static void cpg_sd_clock_disable(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	struct sd_clock *clock = to_sd_clock(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	cpg_reg_modify(clock->csn.reg, 0, CPG_SD_STP_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) static int cpg_sd_clock_is_enabled(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	struct sd_clock *clock = to_sd_clock(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	return !(readl(clock->csn.reg) & CPG_SD_STP_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) static unsigned long cpg_sd_clock_recalc_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 						unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	struct sd_clock *clock = to_sd_clock(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	return DIV_ROUND_CLOSEST(parent_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 				 clock->div_table[clock->cur_div_idx].div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) static int cpg_sd_clock_determine_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 				       struct clk_rate_request *req)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	unsigned long best_rate = ULONG_MAX, diff_min = ULONG_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	struct sd_clock *clock = to_sd_clock(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	unsigned long calc_rate, diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	for (i = 0; i < clock->div_num; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 		calc_rate = DIV_ROUND_CLOSEST(req->best_parent_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 					      clock->div_table[i].div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		if (calc_rate < req->min_rate || calc_rate > req->max_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 		diff = calc_rate > req->rate ? calc_rate - req->rate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 					     : req->rate - calc_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		if (diff < diff_min) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 			best_rate = calc_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 			diff_min = diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	if (best_rate == ULONG_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	req->rate = best_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) static int cpg_sd_clock_set_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 				 unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	struct sd_clock *clock = to_sd_clock(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	for (i = 0; i < clock->div_num; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 		if (rate == DIV_ROUND_CLOSEST(parent_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 					      clock->div_table[i].div))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	if (i >= clock->div_num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	clock->cur_div_idx = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	cpg_reg_modify(clock->csn.reg, CPG_SD_STP_MASK | CPG_SD_FC_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		       clock->div_table[i].val &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 		       (CPG_SD_STP_MASK | CPG_SD_FC_MASK));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) static const struct clk_ops cpg_sd_clock_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	.enable = cpg_sd_clock_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	.disable = cpg_sd_clock_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	.is_enabled = cpg_sd_clock_is_enabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	.recalc_rate = cpg_sd_clock_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	.determine_rate = cpg_sd_clock_determine_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	.set_rate = cpg_sd_clock_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) static u32 cpg_quirks __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) #define PLL_ERRATA	BIT(0)		/* Missing PLL0/2/4 post-divider */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) #define RCKCR_CKSEL	BIT(1)		/* Manual RCLK parent selection */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) #define SD_SKIP_FIRST	BIT(2)		/* Skip first clock in SD table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) static struct clk * __init cpg_sd_clk_register(const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	void __iomem *base, unsigned int offset, const char *parent_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	struct raw_notifier_head *notifiers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	struct clk_init_data init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	struct sd_clock *clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	clock = kzalloc(sizeof(*clock), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	if (!clock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	init.name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	init.ops = &cpg_sd_clock_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	init.flags = CLK_SET_RATE_PARENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	init.parent_names = &parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	clock->csn.reg = base + offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	clock->hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	clock->div_table = cpg_sd_div_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	clock->div_num = ARRAY_SIZE(cpg_sd_div_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	if (cpg_quirks & SD_SKIP_FIRST) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 		clock->div_table++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 		clock->div_num--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	val = readl(clock->csn.reg) & ~CPG_SD_FC_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	val |= CPG_SD_STP_MASK | (clock->div_table[0].val & CPG_SD_FC_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	writel(val, clock->csn.reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	clk = clk_register(NULL, &clock->hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	if (IS_ERR(clk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		goto free_clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	cpg_simple_notifier_register(notifiers, &clock->csn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	return clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) free_clock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	kfree(clock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	return clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) struct rpc_clock {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	struct clk_divider div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	struct clk_gate gate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	 * One notifier covers both RPC and RPCD2 clocks as they are both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	 * controlled by the same RPCCKCR register...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	struct cpg_simple_notifier csn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) static const struct clk_div_table cpg_rpcsrc_div_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	{ 2, 5 }, { 3, 6 }, { 0, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) static const struct clk_div_table cpg_rpc_div_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	{ 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 }, { 0, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) static struct clk * __init cpg_rpc_clk_register(const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	void __iomem *base, const char *parent_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	struct raw_notifier_head *notifiers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	struct rpc_clock *rpc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	rpc = kzalloc(sizeof(*rpc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	if (!rpc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	rpc->div.reg = base + CPG_RPCCKCR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	rpc->div.width = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	rpc->div.table = cpg_rpc_div_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	rpc->div.lock = &cpg_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	rpc->gate.reg = base + CPG_RPCCKCR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	rpc->gate.bit_idx = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	rpc->gate.flags = CLK_GATE_SET_TO_DISABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	rpc->gate.lock = &cpg_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	rpc->csn.reg = base + CPG_RPCCKCR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	clk = clk_register_composite(NULL, name, &parent_name, 1, NULL, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 				     &rpc->div.hw,  &clk_divider_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 				     &rpc->gate.hw, &clk_gate_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 				     CLK_SET_RATE_PARENT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	if (IS_ERR(clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 		kfree(rpc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 		return clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	cpg_simple_notifier_register(notifiers, &rpc->csn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	return clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) struct rpcd2_clock {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	struct clk_fixed_factor fixed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	struct clk_gate gate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) static struct clk * __init cpg_rpcd2_clk_register(const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 						  void __iomem *base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 						  const char *parent_name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	struct rpcd2_clock *rpcd2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	rpcd2 = kzalloc(sizeof(*rpcd2), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	if (!rpcd2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	rpcd2->fixed.mult = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	rpcd2->fixed.div = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	rpcd2->gate.reg = base + CPG_RPCCKCR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	rpcd2->gate.bit_idx = 9;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	rpcd2->gate.flags = CLK_GATE_SET_TO_DISABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	rpcd2->gate.lock = &cpg_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	clk = clk_register_composite(NULL, name, &parent_name, 1, NULL, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 				     &rpcd2->fixed.hw, &clk_fixed_factor_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 				     &rpcd2->gate.hw, &clk_gate_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 				     CLK_SET_RATE_PARENT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 	if (IS_ERR(clk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 		kfree(rpcd2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	return clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) static const struct rcar_gen3_cpg_pll_config *cpg_pll_config __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) static unsigned int cpg_clk_extalr __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) static u32 cpg_mode __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) static const struct soc_device_attribute cpg_quirks_match[] __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 		.soc_id = "r8a7795", .revision = "ES1.0",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 		.data = (void *)(PLL_ERRATA | RCKCR_CKSEL | SD_SKIP_FIRST),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 		.soc_id = "r8a7795", .revision = "ES1.*",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 		.data = (void *)(RCKCR_CKSEL | SD_SKIP_FIRST),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 		.soc_id = "r8a7795", .revision = "ES2.0",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 		.data = (void *)SD_SKIP_FIRST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 		.soc_id = "r8a7796", .revision = "ES1.0",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 		.data = (void *)(RCKCR_CKSEL | SD_SKIP_FIRST),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 		.soc_id = "r8a7796", .revision = "ES1.1",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 		.data = (void *)SD_SKIP_FIRST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	{ /* sentinel */ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) struct clk * __init rcar_gen3_cpg_clk_register(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	struct clk **clks, void __iomem *base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	struct raw_notifier_head *notifiers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	const struct clk *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	unsigned int mult = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	unsigned int div = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	parent = clks[core->parent & 0xffff];	/* some types use high bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	if (IS_ERR(parent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 		return ERR_CAST(parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	switch (core->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	case CLK_TYPE_GEN3_MAIN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 		div = cpg_pll_config->extal_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	case CLK_TYPE_GEN3_PLL0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		 * PLL0 is a configurable multiplier clock. Register it as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 		 * fixed factor clock for now as there's no generic multiplier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 		 * clock implementation and we currently have no need to change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 		 * the multiplier value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		value = readl(base + CPG_PLL0CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 		mult = (((value >> 24) & 0x7f) + 1) * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 		if (cpg_quirks & PLL_ERRATA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 			mult *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	case CLK_TYPE_GEN3_PLL1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 		mult = cpg_pll_config->pll1_mult;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 		div = cpg_pll_config->pll1_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	case CLK_TYPE_GEN3_PLL2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 		 * PLL2 is a configurable multiplier clock. Register it as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 		 * fixed factor clock for now as there's no generic multiplier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 		 * clock implementation and we currently have no need to change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 		 * the multiplier value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 		value = readl(base + CPG_PLL2CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 		mult = (((value >> 24) & 0x7f) + 1) * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 		if (cpg_quirks & PLL_ERRATA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 			mult *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	case CLK_TYPE_GEN3_PLL3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 		mult = cpg_pll_config->pll3_mult;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 		div = cpg_pll_config->pll3_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	case CLK_TYPE_GEN3_PLL4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 		 * PLL4 is a configurable multiplier clock. Register it as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 		 * fixed factor clock for now as there's no generic multiplier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 		 * clock implementation and we currently have no need to change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 		 * the multiplier value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 		value = readl(base + CPG_PLL4CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 		mult = (((value >> 24) & 0x7f) + 1) * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 		if (cpg_quirks & PLL_ERRATA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 			mult *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	case CLK_TYPE_GEN3_SD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 		return cpg_sd_clk_register(core->name, base, core->offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 					   __clk_get_name(parent), notifiers);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	case CLK_TYPE_GEN3_R:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 		if (cpg_quirks & RCKCR_CKSEL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 			struct cpg_simple_notifier *csn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 			csn = kzalloc(sizeof(*csn), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 			if (!csn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 				return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 			csn->reg = base + CPG_RCKCR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 			 * RINT is default.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 			 * Only if EXTALR is populated, we switch to it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 			value = readl(csn->reg) & 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 			if (clk_get_rate(clks[cpg_clk_extalr])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 				parent = clks[cpg_clk_extalr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 				value |= CPG_RCKCR_CKSEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 			writel(value, csn->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 			cpg_simple_notifier_register(notifiers, csn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 		/* Select parent clock of RCLK by MD28 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 		if (cpg_mode & BIT(28))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 			parent = clks[cpg_clk_extalr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	case CLK_TYPE_GEN3_MDSEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 		 * Clock selectable between two parents and two fixed dividers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 		 * using a mode pin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 		if (cpg_mode & BIT(core->offset)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 			div = core->div & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 			parent = clks[core->parent >> 16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 			if (IS_ERR(parent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 				return ERR_CAST(parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 			div = core->div >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 		mult = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 	case CLK_TYPE_GEN3_Z:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 		return cpg_z_clk_register(core->name, __clk_get_name(parent),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 					  base, core->div, core->offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 	case CLK_TYPE_GEN3_OSC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 		 * Clock combining OSC EXTAL predivider and a fixed divider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 		div = cpg_pll_config->osc_prediv * core->div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 	case CLK_TYPE_GEN3_RCKSEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 		 * Clock selectable between two parents and two fixed dividers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 		 * using RCKCR.CKSEL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 		if (readl(base + CPG_RCKCR) & CPG_RCKCR_CKSEL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 			div = core->div & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 			parent = clks[core->parent >> 16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 			if (IS_ERR(parent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 				return ERR_CAST(parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 			div = core->div >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 	case CLK_TYPE_GEN3_RPCSRC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 		return clk_register_divider_table(NULL, core->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 						  __clk_get_name(parent), 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 						  base + CPG_RPCCKCR, 3, 2, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 						  cpg_rpcsrc_div_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 						  &cpg_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	case CLK_TYPE_GEN3_RPC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 		return cpg_rpc_clk_register(core->name, base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 					    __clk_get_name(parent), notifiers);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	case CLK_TYPE_GEN3_RPCD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 		return cpg_rpcd2_clk_register(core->name, base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 					      __clk_get_name(parent));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 		return ERR_PTR(-EINVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	return clk_register_fixed_factor(NULL, core->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 					 __clk_get_name(parent), 0, mult, div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) int __init rcar_gen3_cpg_init(const struct rcar_gen3_cpg_pll_config *config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 			      unsigned int clk_extalr, u32 mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	const struct soc_device_attribute *attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 	cpg_pll_config = config;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 	cpg_clk_extalr = clk_extalr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 	cpg_mode = mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 	attr = soc_device_match(cpg_quirks_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	if (attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 		cpg_quirks = (uintptr_t)attr->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	pr_debug("%s: mode = 0x%x quirks = 0x%x\n", __func__, mode, cpg_quirks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 	spin_lock_init(&cpg_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) }