^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Driver for Silicon Labs Si544 Programmable Oscillator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright (C) 2018 Topic Embedded Products
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Author: Mike Looijmans <mike.looijmans@topic.nl>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/clk-provider.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/math64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) /* I2C registers (decimal as in datasheet) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #define SI544_REG_CONTROL 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #define SI544_REG_OE_STATE 17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #define SI544_REG_HS_DIV 23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #define SI544_REG_LS_HS_DIV 24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #define SI544_REG_FBDIV0 26
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #define SI544_REG_FBDIV8 27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #define SI544_REG_FBDIV16 28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #define SI544_REG_FBDIV24 29
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define SI544_REG_FBDIV32 30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define SI544_REG_FBDIV40 31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #define SI544_REG_FCAL_OVR 69
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define SI544_REG_ADPLL_DELTA_M0 231
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define SI544_REG_ADPLL_DELTA_M8 232
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define SI544_REG_ADPLL_DELTA_M16 233
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define SI544_REG_PAGE_SELECT 255
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) /* Register values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define SI544_CONTROL_RESET BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define SI544_CONTROL_MS_ICAL2 BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define SI544_OE_STATE_ODC_OE BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) /* Max freq depends on speed grade */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define SI544_MIN_FREQ 200000U
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) /* Si544 Internal oscilator runs at 55.05 MHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define FXO 55050000U
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) /* VCO range is 10.8 .. 12.1 GHz, max depends on speed grade */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #define FVCO_MIN 10800000000ULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define HS_DIV_MAX 2046
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define HS_DIV_MAX_ODD 33
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) /* Lowest frequency synthesizeable using only the HS divider */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #define MIN_HSDIV_FREQ (FVCO_MIN / HS_DIV_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) /* Range and interpretation of the adjustment value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define DELTA_M_MAX 8161512
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #define DELTA_M_FRAC_NUM 19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #define DELTA_M_FRAC_DEN 20000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) enum si544_speed_grade {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) si544a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) si544b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) si544c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) struct clk_si544 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) struct i2c_client *i2c_client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) enum si544_speed_grade speed_grade;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define to_clk_si544(_hw) container_of(_hw, struct clk_si544, hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) * struct clk_si544_muldiv - Multiplier/divider settings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) * @fb_div_frac: integer part of feedback divider (32 bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * @fb_div_int: fractional part of feedback divider (11 bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) * @hs_div: 1st divider, 5..2046, must be even when >33
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) * @ls_div_bits: 2nd divider, as 2^x, range 0..5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) * If ls_div_bits is non-zero, hs_div must be even
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * @delta_m: Frequency shift for small -950..+950 ppm changes, 24 bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) struct clk_si544_muldiv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) u32 fb_div_frac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) u16 fb_div_int;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) u16 hs_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) u8 ls_div_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) s32 delta_m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) /* Enables or disables the output driver */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) static int si544_enable_output(struct clk_si544 *data, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) return regmap_update_bits(data->regmap, SI544_REG_OE_STATE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) SI544_OE_STATE_ODC_OE, enable ? SI544_OE_STATE_ODC_OE : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) static int si544_prepare(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) struct clk_si544 *data = to_clk_si544(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) return si544_enable_output(data, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) static void si544_unprepare(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) struct clk_si544 *data = to_clk_si544(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) si544_enable_output(data, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) static int si544_is_prepared(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) struct clk_si544 *data = to_clk_si544(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) unsigned int val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) err = regmap_read(data->regmap, SI544_REG_OE_STATE, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) return !!(val & SI544_OE_STATE_ODC_OE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) /* Retrieve clock multiplier and dividers from hardware */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) static int si544_get_muldiv(struct clk_si544 *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) struct clk_si544_muldiv *settings)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) u8 reg[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) err = regmap_bulk_read(data->regmap, SI544_REG_HS_DIV, reg, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) settings->ls_div_bits = (reg[1] >> 4) & 0x07;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) settings->hs_div = (reg[1] & 0x07) << 8 | reg[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) err = regmap_bulk_read(data->regmap, SI544_REG_FBDIV0, reg, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) settings->fb_div_int = reg[4] | (reg[5] & 0x07) << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) settings->fb_div_frac = reg[0] | reg[1] << 8 | reg[2] << 16 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) reg[3] << 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) err = regmap_bulk_read(data->regmap, SI544_REG_ADPLL_DELTA_M0, reg, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) /* Interpret as 24-bit signed number */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) settings->delta_m = reg[0] << 8 | reg[1] << 16 | reg[2] << 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) settings->delta_m >>= 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) static int si544_set_delta_m(struct clk_si544 *data, s32 delta_m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) u8 reg[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) reg[0] = delta_m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) reg[1] = delta_m >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) reg[2] = delta_m >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) return regmap_bulk_write(data->regmap, SI544_REG_ADPLL_DELTA_M0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) reg, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) static int si544_set_muldiv(struct clk_si544 *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) struct clk_si544_muldiv *settings)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) u8 reg[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) reg[0] = settings->hs_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) reg[1] = settings->hs_div >> 8 | settings->ls_div_bits << 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) err = regmap_bulk_write(data->regmap, SI544_REG_HS_DIV, reg, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) reg[0] = settings->fb_div_frac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) reg[1] = settings->fb_div_frac >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) reg[2] = settings->fb_div_frac >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) reg[3] = settings->fb_div_frac >> 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) reg[4] = settings->fb_div_int;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) reg[5] = settings->fb_div_int >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) * Writing to SI544_REG_FBDIV40 triggers the clock change, so that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) * must be written last
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) return regmap_bulk_write(data->regmap, SI544_REG_FBDIV0, reg, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) static bool is_valid_frequency(const struct clk_si544 *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) unsigned long frequency)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) unsigned long max_freq = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) if (frequency < SI544_MIN_FREQ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) switch (data->speed_grade) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) case si544a:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) max_freq = 1500000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) case si544b:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) max_freq = 800000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) case si544c:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) max_freq = 350000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) return frequency <= max_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) /* Calculate divider settings for a given frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) static int si544_calc_muldiv(struct clk_si544_muldiv *settings,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) unsigned long frequency)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) u64 vco;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) u32 ls_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) u32 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) u8 res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) /* Determine the minimum value of LS_DIV and resulting target freq. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) ls_freq = frequency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) settings->ls_div_bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) if (frequency >= MIN_HSDIV_FREQ) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) settings->ls_div_bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) res = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) tmp = 2 * HS_DIV_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) while (tmp <= (HS_DIV_MAX * 32)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) if (((u64)frequency * tmp) >= FVCO_MIN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) ++res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) tmp <<= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) settings->ls_div_bits = res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) ls_freq = frequency << res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) /* Determine minimum HS_DIV by rounding up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) vco = FVCO_MIN + ls_freq - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) do_div(vco, ls_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) settings->hs_div = vco;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) /* round up to even number when required */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) if ((settings->hs_div & 1) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) (settings->hs_div > HS_DIV_MAX_ODD || settings->ls_div_bits))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) ++settings->hs_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) /* Calculate VCO frequency (in 10..12GHz range) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) vco = (u64)ls_freq * settings->hs_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) /* Calculate the integer part of the feedback divider */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) tmp = do_div(vco, FXO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) settings->fb_div_int = vco;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) /* And the fractional bits using the remainder */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) vco = (u64)tmp << 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) vco += FXO / 2; /* Round to nearest multiple */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) do_div(vco, FXO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) settings->fb_div_frac = vco;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) /* Reset the frequency adjustment */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) settings->delta_m = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) /* Calculate resulting frequency given the register settings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) static unsigned long si544_calc_center_rate(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) const struct clk_si544_muldiv *settings)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) u32 d = settings->hs_div * BIT(settings->ls_div_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) u64 vco;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) /* Calculate VCO from the fractional part */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) vco = (u64)settings->fb_div_frac * FXO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) vco += (FXO / 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) vco >>= 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) /* Add the integer part of the VCO frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) vco += (u64)settings->fb_div_int * FXO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) /* Apply divider to obtain the generated frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) do_div(vco, d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) return vco;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) static unsigned long si544_calc_rate(const struct clk_si544_muldiv *settings)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) unsigned long rate = si544_calc_center_rate(settings);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) s64 delta = (s64)rate * (DELTA_M_FRAC_NUM * settings->delta_m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) * The clock adjustment is much smaller than 1 Hz, round to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) * nearest multiple. Apparently div64_s64 rounds towards zero, hence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) * check the sign and adjust into the proper direction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) if (settings->delta_m < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) delta -= ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) delta += ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) delta = div64_s64(delta, ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) return rate + delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) static unsigned long si544_recalc_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) struct clk_si544 *data = to_clk_si544(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) struct clk_si544_muldiv settings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) err = si544_get_muldiv(data, &settings);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) return si544_calc_rate(&settings);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) static long si544_round_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) unsigned long *parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) struct clk_si544 *data = to_clk_si544(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) if (!is_valid_frequency(data, rate))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) /* The accuracy is less than 1 Hz, so any rate is possible */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) return rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) /* Calculates the maximum "small" change, 950 * rate / 1000000 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) static unsigned long si544_max_delta(unsigned long rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) u64 num = rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) num *= DELTA_M_FRAC_NUM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) do_div(num, DELTA_M_FRAC_DEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) return num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) static s32 si544_calc_delta(s32 delta, s32 max_delta)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) s64 n = (s64)delta * DELTA_M_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) return div_s64(n, max_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) static int si544_set_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) struct clk_si544 *data = to_clk_si544(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) struct clk_si544_muldiv settings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) unsigned long center;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) long max_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) long delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) unsigned int old_oe_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) if (!is_valid_frequency(data, rate))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) /* Try using the frequency adjustment feature for a <= 950ppm change */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) err = si544_get_muldiv(data, &settings);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) center = si544_calc_center_rate(&settings);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) max_delta = si544_max_delta(center);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) delta = rate - center;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) if (abs(delta) <= max_delta)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) return si544_set_delta_m(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) si544_calc_delta(delta, max_delta));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) /* Too big for the delta adjustment, need to reprogram */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) err = si544_calc_muldiv(&settings, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) err = regmap_read(data->regmap, SI544_REG_OE_STATE, &old_oe_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) si544_enable_output(data, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) /* Allow FCAL for this frequency update */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) err = regmap_write(data->regmap, SI544_REG_FCAL_OVR, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) err = si544_set_delta_m(data, settings.delta_m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) err = si544_set_muldiv(data, &settings);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) return err; /* Undefined state now, best to leave disabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) /* Trigger calibration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) err = regmap_write(data->regmap, SI544_REG_CONTROL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) SI544_CONTROL_MS_ICAL2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) /* Applying a new frequency can take up to 10ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) usleep_range(10000, 12000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) if (old_oe_state & SI544_OE_STATE_ODC_OE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) si544_enable_output(data, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) static const struct clk_ops si544_clk_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) .prepare = si544_prepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) .unprepare = si544_unprepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) .is_prepared = si544_is_prepared,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) .recalc_rate = si544_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) .round_rate = si544_round_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) .set_rate = si544_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) static bool si544_regmap_is_volatile(struct device *dev, unsigned int reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) switch (reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) case SI544_REG_CONTROL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) case SI544_REG_FCAL_OVR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) static const struct regmap_config si544_regmap_config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) .reg_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) .val_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) .cache_type = REGCACHE_RBTREE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) .max_register = SI544_REG_PAGE_SELECT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) .volatile_reg = si544_regmap_is_volatile,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) static int si544_probe(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) const struct i2c_device_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) struct clk_si544 *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) struct clk_init_data init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) init.ops = &si544_clk_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) init.flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) init.num_parents = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) data->hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) data->i2c_client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) data->speed_grade = id->driver_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) if (of_property_read_string(client->dev.of_node, "clock-output-names",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) &init.name))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) init.name = client->dev.of_node->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) data->regmap = devm_regmap_init_i2c(client, &si544_regmap_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) if (IS_ERR(data->regmap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) return PTR_ERR(data->regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) i2c_set_clientdata(client, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) /* Select page 0, just to be sure, there appear to be no more */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) err = regmap_write(data->regmap, SI544_REG_PAGE_SELECT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) err = devm_clk_hw_register(&client->dev, &data->hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) dev_err(&client->dev, "clock registration failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) err = devm_of_clk_add_hw_provider(&client->dev, of_clk_hw_simple_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) &data->hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) dev_err(&client->dev, "unable to add clk provider\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) static const struct i2c_device_id si544_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) { "si544a", si544a },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) { "si544b", si544b },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) { "si544c", si544c },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) MODULE_DEVICE_TABLE(i2c, si544_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) static const struct of_device_id clk_si544_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) { .compatible = "silabs,si544a" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) { .compatible = "silabs,si544b" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) { .compatible = "silabs,si544c" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) { },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) MODULE_DEVICE_TABLE(of, clk_si544_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) static struct i2c_driver si544_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) .name = "si544",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) .of_match_table = clk_si544_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) .probe = si544_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) .id_table = si544_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) module_i2c_driver(si544_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) MODULE_DESCRIPTION("Si544 driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) MODULE_LICENSE("GPL");