Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * basis. Clients can directly request any frequency that the chip can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * deliver using the standard clk framework. In addition, the device can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * be configured and activated via the devicetree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Copyright (C) 2014, Topic Embedded Products
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * Licenced under GPL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/clk-provider.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/regulator/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/gcd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) /* Each chip has different number of PLLs and outputs, for example:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * Model this as 2 PLL clocks which are parents to the outputs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	CDCE913,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 	CDCE925,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 	CDCE937,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	CDCE949,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) struct clk_cdce925_chip_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	int num_plls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	int num_outputs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	[CDCE913] = { .num_plls = 1, .num_outputs = 3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	[CDCE925] = { .num_plls = 2, .num_outputs = 5 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	[CDCE937] = { .num_plls = 3, .num_outputs = 7 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	[CDCE949] = { .num_plls = 4, .num_outputs = 9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define MAX_NUMBER_OF_PLLS	4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define MAX_NUMBER_OF_OUTPUTS	9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define CDCE925_REG_GLOBAL1	0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define CDCE925_REG_Y1SPIPDIVH	0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define CDCE925_REG_PDIVL	0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define CDCE925_REG_XCSEL	0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) /* PLL parameters start at 0x10, steps of 0x10 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define CDCE925_OFFSET_PLL	0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define CDCE925_PLL_MUX_OUTPUTS	0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define CDCE925_PLL_MULDIV	0x18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define CDCE925_PLL_FREQUENCY_MAX	230000000ul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) struct clk_cdce925_chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) struct clk_cdce925_output {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	struct clk_cdce925_chip *chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	u8 index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define to_clk_cdce925_output(_hw) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	container_of(_hw, struct clk_cdce925_output, hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) struct clk_cdce925_pll {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	struct clk_cdce925_chip *chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	u8 index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	u16 m;   /* 1..511 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	u16 n;   /* 1..4095 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) struct clk_cdce925_chip {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	struct i2c_client *i2c_client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	const struct clk_cdce925_chip_info *chip_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	u16 n, u16 m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	if ((!m || !n) || (m == n))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		return parent_rate; /* In bypass mode runs at same frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) static void cdce925_pll_find_rate(unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		unsigned long parent_rate, u16 *n, u16 *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	unsigned long un;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	unsigned long um;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	unsigned long g;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	if (rate <= parent_rate) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		/* Can always deliver parent_rate in bypass mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		rate = parent_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		*n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		*m = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		/* In PLL mode, need to apply min/max range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		if (rate < CDCE925_PLL_FREQUENCY_MIN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 			rate = CDCE925_PLL_FREQUENCY_MIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 			rate = CDCE925_PLL_FREQUENCY_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		g = gcd(rate, parent_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		um = parent_rate / g;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		un = rate / g;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		/* When outside hw range, reduce to fit (rounding errors) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		while ((un > 4095) || (um > 511)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 			un >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 			um >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		if (un == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 			un = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		if (um == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 			um = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		*n = un;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		*m = um;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		unsigned long *parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	u16 n, m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	if (!rate || (rate == parent_rate)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 		data->m = 0; /* Bypass mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		data->n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	if (rate < parent_rate) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 			rate, parent_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) /* calculate p = max(0, 4 - int(log2 (n/m))) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) static u8 cdce925_pll_calc_p(u16 n, u16 m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	u8 p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	u16 r = n / m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	if (r >= 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	p = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	while (r > 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 		r >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		--p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	return p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) /* Returns VCO range bits for VCO1_0_RANGE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	struct clk *parent = clk_get_parent(hw->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	unsigned long rate = clk_get_rate(parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	if (rate >= 175000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		return 0x3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	if (rate >= 150000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		return 0x02;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	if (rate >= 125000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		return 0x01;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	return 0x00;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) /* I2C clock, hence everything must happen in (un)prepare because this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)  * may sleep */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) static int cdce925_pll_prepare(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	u16 n = data->n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	u16 m = data->m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	u16 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	u8 q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	u8 p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	u16 nn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	u8 pll[4]; /* Bits are spread out over 4 byte registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	if ((!m || !n) || (m == n)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 		/* Set PLL mux to bypass mode, leave the rest as is */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 		regmap_update_bits(data->chip->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 		/* According to data sheet: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 		/* p = max(0, 4 - int(log2 (n/m))) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 		p = cdce925_pll_calc_p(n, m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 		/* nn = n * 2^p */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 		nn = n * BIT(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 		/* q = int(nn/m) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 		q = nn / m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		if ((q < 16) || (q > 63)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 			pr_debug("%s invalid q=%d\n", __func__, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 		r = nn - (m*q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 		if (r > 511) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 			pr_debug("%s invalid r=%d\n", __func__, r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 			n, m, p, q, r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		/* encode into register bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		pll[0] = n >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 		pll[3] = ((q & 0x07) << 5) | (p << 2) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 				cdce925_pll_calc_range_bits(hw, n, m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 		/* Write to registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		for (i = 0; i < ARRAY_SIZE(pll); ++i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 			regmap_write(data->chip->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 		/* Enable PLL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 		regmap_update_bits(data->chip->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) static void cdce925_pll_unprepare(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	regmap_update_bits(data->chip->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) static const struct clk_ops cdce925_pll_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	.prepare = cdce925_pll_prepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	.unprepare = cdce925_pll_unprepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	.recalc_rate = cdce925_pll_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	.round_rate = cdce925_pll_round_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	.set_rate = cdce925_pll_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	switch (data->index) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		regmap_update_bits(data->chip->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 			CDCE925_REG_Y1SPIPDIVH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 			0x03, (pdiv >> 8) & 0x03);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) static void cdce925_clk_activate(struct clk_cdce925_output *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	switch (data->index) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		regmap_update_bits(data->chip->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) static int cdce925_clk_prepare(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	cdce925_clk_set_pdiv(data, data->pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	cdce925_clk_activate(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) static void cdce925_clk_unprepare(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	/* Disable clock by setting divider to "0" */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	cdce925_clk_set_pdiv(data, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	if (data->pdiv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 		return parent_rate / data->pdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) static u16 cdce925_calc_divider(unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	unsigned long divider;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	if (!rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	if (rate >= parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	if (divider > 0x7F)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 		divider = 0x7F;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	return (u16)divider;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) static unsigned long cdce925_clk_best_parent_rate(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	struct clk_hw *hw, unsigned long rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	struct clk *pll = clk_get_parent(hw->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	struct clk *root = clk_get_parent(pll);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	unsigned long root_rate = clk_get_rate(root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	unsigned long best_rate_error = rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	u16 pdiv_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	u16 pdiv_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	u16 pdiv_best;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	u16 pdiv_now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	if (root_rate % rate == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 		return root_rate; /* Don't need the PLL, use bypass */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	if (pdiv_min > pdiv_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		return 0; /* No can do? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	pdiv_best = pdiv_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 		unsigned long target_rate = rate * pdiv_now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 		long pll_rate = clk_round_rate(pll, target_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		unsigned long actual_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		unsigned long rate_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		if (pll_rate <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 		actual_rate = pll_rate / pdiv_now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 		rate_error = abs((long)actual_rate - (long)rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 		if (rate_error < best_rate_error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 			pdiv_best = pdiv_now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 			best_rate_error = rate_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 		/* TODO: Consider PLL frequency based on smaller n/m values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 		 * and pick the better one if the error is equal */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	return rate * pdiv_best;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 		unsigned long *parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	unsigned long l_parent_rate = *parent_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	if (l_parent_rate / divider != rate) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 		divider = cdce925_calc_divider(rate, l_parent_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 		*parent_rate = l_parent_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	if (divider)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 		return (long)(l_parent_rate / divider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	data->pdiv = cdce925_calc_divider(rate, parent_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) static const struct clk_ops cdce925_clk_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	.prepare = cdce925_clk_prepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	.unprepare = cdce925_clk_unprepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	.recalc_rate = cdce925_clk_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	.round_rate = cdce925_clk_round_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	.set_rate = cdce925_clk_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) static u16 cdce925_y1_calc_divider(unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	unsigned long divider;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	if (!rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	if (rate >= parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	if (divider > 0x3FF) /* Y1 has 10-bit divider */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 		divider = 0x3FF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	return (u16)divider;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 		unsigned long *parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	unsigned long l_parent_rate = *parent_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	if (divider)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 		return (long)(l_parent_rate / divider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) static const struct clk_ops cdce925_clk_y1_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	.prepare = cdce925_clk_prepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	.unprepare = cdce925_clk_unprepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	.recalc_rate = cdce925_clk_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	.round_rate = cdce925_clk_y1_round_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	.set_rate = cdce925_clk_y1_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) static int cdce925_regmap_i2c_write(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	void *context, const void *data, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	struct device *dev = context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	struct i2c_client *i2c = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	u8 reg_data[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	if (count != 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 		return -ENOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	/* First byte is command code */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	reg_data[1] = ((u8 *)data)[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 			reg_data[0], reg_data[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	ret = i2c_master_send(i2c, reg_data, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	if (likely(ret == count))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	else if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) static int cdce925_regmap_i2c_read(void *context,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	   const void *reg, size_t reg_size, void *val, size_t val_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	struct device *dev = context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	struct i2c_client *i2c = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	struct i2c_msg xfer[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	u8 reg_data[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	if (reg_size != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 		return -ENOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	xfer[0].addr = i2c->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	xfer[0].flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	xfer[0].buf = reg_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	if (val_size == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 		reg_data[0] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		xfer[0].len = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 		reg_data[0] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		reg_data[1] = val_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		xfer[0].len = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	xfer[1].addr = i2c->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 	xfer[1].flags = I2C_M_RD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	xfer[1].len = val_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	xfer[1].buf = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	ret = i2c_transfer(i2c->adapter, xfer, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	if (likely(ret == 2)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 				reg_size, val_size, reg_data[0], *((u8 *)val));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	} else if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) static struct clk_hw *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	struct clk_cdce925_chip *data = _data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	unsigned int idx = clkspec->args[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	if (idx >= ARRAY_SIZE(data->clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 		pr_err("%s: invalid index %u\n", __func__, idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 		return ERR_PTR(-EINVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	return &data->clk[idx].hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) static void cdce925_regulator_disable(void *regulator)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	regulator_disable(regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) static int cdce925_regulator_enable(struct device *dev, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	struct regulator *regulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	regulator = devm_regulator_get(dev, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 	if (IS_ERR(regulator))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 		return PTR_ERR(regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 	err = regulator_enable(regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 		dev_err(dev, "Failed to enable %s: %d\n", name, err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	return devm_add_action_or_reset(dev, cdce925_regulator_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 					regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631)  * just weird, so just use the single byte mode exclusively. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) static struct regmap_bus regmap_cdce925_bus = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 	.write = cdce925_regmap_i2c_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	.read = cdce925_regmap_i2c_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) static int cdce925_probe(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 		const struct i2c_device_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 	struct clk_cdce925_chip *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	struct device_node *node = client->dev.of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 	const char *parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 	struct clk_init_data init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 	struct device_node *np_output;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 	char child_name[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	struct regmap_config config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 		.name = "configuration0",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 		.reg_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 		.val_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 		.cache_type = REGCACHE_RBTREE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 	dev_dbg(&client->dev, "%s\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	err = cdce925_regulator_enable(&client->dev, "vdd");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 	err = cdce925_regulator_enable(&client->dev, "vddout");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 	data->i2c_client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 	data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	config.max_register = CDCE925_OFFSET_PLL +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 		data->chip_info->num_plls * 0x10 - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 			&client->dev, &config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 	if (IS_ERR(data->regmap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 		dev_err(&client->dev, "failed to allocate register map\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 		return PTR_ERR(data->regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 	i2c_set_clientdata(client, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 	parent_name = of_clk_get_parent_name(node, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	if (!parent_name) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 		dev_err(&client->dev, "missing parent clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 		regmap_write(data->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 	/* PWDN bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 	/* Set input source for Y1 to be the XTAL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	init.ops = &cdce925_pll_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 	init.flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 	init.parent_names = &parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	/* Register PLL clocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	for (i = 0; i < data->chip_info->num_plls; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 			client->dev.of_node, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 		init.name = pll_clk_name[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 		data->pll[i].chip = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 		data->pll[i].hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 		data->pll[i].index = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 		if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 			dev_err(&client->dev, "Failed register PLL %d\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 			goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 		sprintf(child_name, "PLL%d", i+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 		np_output = of_get_child_by_name(node, child_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 		if (!np_output)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 		if (!of_property_read_u32(np_output,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 			"clock-frequency", &value)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 			err = clk_set_rate(data->pll[i].hw.clk, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 			if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 				dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 					"unable to set PLL frequency %ud\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 					value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 		if (!of_property_read_u32(np_output,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 			"spread-spectrum", &value)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 			u8 flag = of_property_read_bool(np_output,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 				"spread-spectrum-center") ? 0x80 : 0x00;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 			regmap_update_bits(data->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 				0x16 + (i*CDCE925_OFFSET_PLL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 				0x80, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 			regmap_update_bits(data->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 				0x12 + (i*CDCE925_OFFSET_PLL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 				0x07, value & 0x07);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 		of_node_put(np_output);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 	/* Register output clock Y1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 	init.ops = &cdce925_clk_y1_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 	init.flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 	init.parent_names = &parent_name; /* Mux Y1 to input */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	data->clk[0].chip = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 	data->clk[0].hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 	data->clk[0].index = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 	data->clk[0].pdiv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 	kfree(init.name); /* clock framework made a copy of the name */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 		dev_err(&client->dev, "clock registration Y1 failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 		goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 	/* Register output clocks Y2 .. Y5*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	init.ops = &cdce925_clk_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 	init.flags = CLK_SET_RATE_PARENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 	for (i = 1; i < data->chip_info->num_outputs; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 			client->dev.of_node, i+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 		data->clk[i].chip = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 		data->clk[i].hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 		data->clk[i].index = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 		data->clk[i].pdiv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 		switch (i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 		case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 		case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 			/* Mux Y2/3 to PLL1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 			init.parent_names = &pll_clk_name[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 		case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 		case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 			/* Mux Y4/5 to PLL2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 			init.parent_names = &pll_clk_name[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 		case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 		case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 			/* Mux Y6/7 to PLL3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 			init.parent_names = &pll_clk_name[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 		case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 		case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 			/* Mux Y8/9 to PLL4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 			init.parent_names = &pll_clk_name[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 		kfree(init.name); /* clock framework made a copy of the name */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 		if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 			dev_err(&client->dev, "clock registration failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 			goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 	/* Register the output clocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 				  data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 		dev_err(&client->dev, "unable to add OF clock provider\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 	err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 	for (i = 0; i < data->chip_info->num_plls; ++i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 		/* clock framework made a copy of the name */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 		kfree(pll_clk_name[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) static const struct i2c_device_id cdce925_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 	{ "cdce913", CDCE913 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 	{ "cdce925", CDCE925 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 	{ "cdce937", CDCE937 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 	{ "cdce949", CDCE949 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) MODULE_DEVICE_TABLE(i2c, cdce925_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) static const struct of_device_id clk_cdce925_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	{ .compatible = "ti,cdce913" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 	{ .compatible = "ti,cdce925" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 	{ .compatible = "ti,cdce937" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	{ .compatible = "ti,cdce949" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 	{ },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) static struct i2c_driver cdce925_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 		.name = "cdce925",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 		.of_match_table = of_match_ptr(clk_cdce925_of_match),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 	.probe		= cdce925_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 	.id_table	= cdce925_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) module_i2c_driver(cdce925_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) MODULE_LICENSE("GPL");