Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (c) 2014 Marvell Technology Group Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Alexandre Belloni <alexandre.belloni@free-electrons.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/clk-provider.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/of_address.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include "berlin2-avpll.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * VCO with 8 channels each, channel 8 is the odd-one-out and does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  * not provide mul/div.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * Unfortunately, its registers are not named but just numbered. To
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * get in at least some kind of structure, we split each AVPLL into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * the VCOs and each channel into separate clock drivers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * Also, here and there the VCO registers are a bit different with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * respect to bit shifts. Make sure to add a comment for those.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define NUM_CHANNELS	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define AVPLL_CTRL(x)		((x) * 0x4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define VCO_CTRL0		AVPLL_CTRL(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) /* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define  VCO_RESET		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define  VCO_POWERUP		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define  VCO_INTERPOL_SHIFT	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define  VCO_INTERPOL_MASK	(0xf << VCO_INTERPOL_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define  VCO_REG1V45_SEL_SHIFT	6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define  VCO_REG1V45_SEL(x)	((x) << VCO_REG1V45_SEL_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define  VCO_REG1V45_SEL_1V40	VCO_REG1V45_SEL(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define  VCO_REG1V45_SEL_1V45	VCO_REG1V45_SEL(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define  VCO_REG1V45_SEL_1V50	VCO_REG1V45_SEL(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define  VCO_REG1V45_SEL_1V55	VCO_REG1V45_SEL(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define  VCO_REG1V45_SEL_MASK	VCO_REG1V45_SEL(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define  VCO_REG0V9_SEL_SHIFT	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define  VCO_REG0V9_SEL_MASK	(0xf << VCO_REG0V9_SEL_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define  VCO_VTHCAL_SHIFT	12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define  VCO_VTHCAL(x)		((x) << VCO_VTHCAL_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define  VCO_VTHCAL_0V90	VCO_VTHCAL(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define  VCO_VTHCAL_0V95	VCO_VTHCAL(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define  VCO_VTHCAL_1V00	VCO_VTHCAL(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define  VCO_VTHCAL_1V05	VCO_VTHCAL(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define  VCO_VTHCAL_MASK	VCO_VTHCAL(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define  VCO_KVCOEXT_SHIFT	14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define  VCO_KVCOEXT_MASK	(0x3 << VCO_KVCOEXT_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define  VCO_KVCOEXT_ENABLE	BIT(17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define  VCO_V2IEXT_SHIFT	18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define  VCO_V2IEXT_MASK	(0xf << VCO_V2IEXT_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define  VCO_V2IEXT_ENABLE	BIT(22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define  VCO_SPEED_SHIFT	23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define  VCO_SPEED(x)		((x) << VCO_SPEED_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define  VCO_SPEED_1G08_1G21	VCO_SPEED(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define  VCO_SPEED_1G21_1G40	VCO_SPEED(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define  VCO_SPEED_1G40_1G61	VCO_SPEED(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) #define  VCO_SPEED_1G61_1G86	VCO_SPEED(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define  VCO_SPEED_1G86_2G00	VCO_SPEED(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define  VCO_SPEED_2G00_2G22	VCO_SPEED(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) #define  VCO_SPEED_2G22		VCO_SPEED(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define  VCO_SPEED_MASK		VCO_SPEED(0x7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define  VCO_CLKDET_ENABLE	BIT(26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define VCO_CTRL1		AVPLL_CTRL(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define  VCO_REFDIV_SHIFT	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #define  VCO_REFDIV(x)		((x) << VCO_REFDIV_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define  VCO_REFDIV_1		VCO_REFDIV(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define  VCO_REFDIV_2		VCO_REFDIV(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define  VCO_REFDIV_4		VCO_REFDIV(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) #define  VCO_REFDIV_3		VCO_REFDIV(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) #define  VCO_REFDIV_MASK	VCO_REFDIV(0x3f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define  VCO_FBDIV_SHIFT	6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define  VCO_FBDIV(x)		((x) << VCO_FBDIV_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #define  VCO_FBDIV_MASK		VCO_FBDIV(0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) #define  VCO_ICP_SHIFT		14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) /* PLL Charge Pump Current = 10uA * (x + 1) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) #define  VCO_ICP(x)		((x) << VCO_ICP_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) #define  VCO_ICP_MASK		VCO_ICP(0xf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) #define  VCO_LOAD_CAP		BIT(18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) #define  VCO_CALIBRATION_START	BIT(19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) #define VCO_FREQOFFSETn(x)	AVPLL_CTRL(3 + (x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) #define  VCO_FREQOFFSET_MASK	0x7ffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) #define VCO_CTRL10		AVPLL_CTRL(10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) #define  VCO_POWERUP_CH1	BIT(20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define VCO_CTRL11		AVPLL_CTRL(11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #define VCO_CTRL12		AVPLL_CTRL(12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) #define VCO_CTRL13		AVPLL_CTRL(13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) #define VCO_CTRL14		AVPLL_CTRL(14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) #define VCO_CTRL15		AVPLL_CTRL(15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) #define VCO_SYNC1n(x)		AVPLL_CTRL(15 + (x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) #define  VCO_SYNC1_MASK		0x1ffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define VCO_SYNC2n(x)		AVPLL_CTRL(23 + (x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define  VCO_SYNC2_MASK		0x1ffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define VCO_CTRL30		AVPLL_CTRL(30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define  VCO_DPLL_CH1_ENABLE	BIT(17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) struct berlin2_avpll_vco {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	u8 flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	reg = readl_relaxed(vco->base + VCO_CTRL0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		reg >>= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	return !!(reg & VCO_POWERUP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) static int berlin2_avpll_vco_enable(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	reg = readl_relaxed(vco->base + VCO_CTRL0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		reg |= VCO_POWERUP << 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		reg |= VCO_POWERUP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	writel_relaxed(reg, vco->base + VCO_CTRL0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) static void berlin2_avpll_vco_disable(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	reg = readl_relaxed(vco->base + VCO_CTRL0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		reg &= ~(VCO_POWERUP << 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		reg &= ~VCO_POWERUP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	writel_relaxed(reg, vco->base + VCO_CTRL0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) static u8 vco_refdiv[] = { 1, 2, 4, 3 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) static unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	u32 reg, refdiv, fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	u64 freq = parent_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	/* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	reg = readl_relaxed(vco->base + VCO_CTRL1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	refdiv = vco_refdiv[refdiv];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	freq *= fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	do_div(freq, refdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	return (unsigned long)freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) static const struct clk_ops berlin2_avpll_vco_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	.is_enabled	= berlin2_avpll_vco_is_enabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	.enable		= berlin2_avpll_vco_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	.disable	= berlin2_avpll_vco_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	.recalc_rate	= berlin2_avpll_vco_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) int __init berlin2_avpll_vco_register(void __iomem *base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 			       const char *name, const char *parent_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 			       u8 vco_flags, unsigned long flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	struct berlin2_avpll_vco *vco;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	struct clk_init_data init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	vco = kzalloc(sizeof(*vco), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	if (!vco)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	vco->base = base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	vco->flags = vco_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	vco->hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	init.name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	init.ops = &berlin2_avpll_vco_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	init.parent_names = &parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	init.flags = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	return clk_hw_register(NULL, &vco->hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) struct berlin2_avpll_channel {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	u8 flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	u8 index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) #define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	if (ch->index == 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	reg = readl_relaxed(ch->base + VCO_CTRL10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	reg &= VCO_POWERUP_CH1 << ch->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	return !!reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) static int berlin2_avpll_channel_enable(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	reg = readl_relaxed(ch->base + VCO_CTRL10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	reg |= VCO_POWERUP_CH1 << ch->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	writel_relaxed(reg, ch->base + VCO_CTRL10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) static void berlin2_avpll_channel_disable(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	reg = readl_relaxed(ch->base + VCO_CTRL10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	reg &= ~(VCO_POWERUP_CH1 << ch->index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	writel_relaxed(reg, ch->base + VCO_CTRL10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) static const u8 div_hdmi[] = { 1, 2, 4, 6 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) static const u8 div_av1[] = { 1, 2, 5, 5 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) static unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	u32 reg, div_av2, div_av3, divider = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	u64 freq = parent_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	reg = readl_relaxed(ch->base + VCO_CTRL30);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		goto skip_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	 * Fch = (Fref * sync2) /
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	 *    (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	/* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 		reg >>= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	divider = reg & VCO_SYNC1_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	freq *= reg & VCO_SYNC2_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	/* Channel 8 has no dividers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	if (ch->index == 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		goto skip_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	 * determine divider.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	reg = (reg >> (ch->index * 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	if (reg & BIT(2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 		divider *= div_hdmi[reg & 0x3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	 * determine divider.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	if (ch->index == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		reg = readl_relaxed(ch->base + VCO_CTRL11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 		reg >>= 28;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		reg = readl_relaxed(ch->base + VCO_CTRL12);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		reg >>= (ch->index-1) * 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	if (reg & BIT(2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		divider *= div_av1[reg & 0x3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	 * zero is not a valid value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	if (ch->index < 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 		reg = readl_relaxed(ch->base + VCO_CTRL12);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		reg >>= 18 + (ch->index * 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	} else if (ch->index < 7) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		reg = readl_relaxed(ch->base + VCO_CTRL13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		reg >>= (ch->index - 2) * 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 		reg = readl_relaxed(ch->base + VCO_CTRL14);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	div_av2 = reg & 0x7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	if (div_av2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		divider *= div_av2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	 * AV2/AV3 form a fractional divider, where only specfic values for AV3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	if (ch->index < 6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 		reg = readl_relaxed(ch->base + VCO_CTRL14);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 		reg >>= 7 + (ch->index * 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		reg = readl_relaxed(ch->base + VCO_CTRL15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	div_av3 = reg & 0xf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	if (div_av2 && div_av3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		freq *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) skip_div:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	do_div(freq, divider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	return (unsigned long)freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) static const struct clk_ops berlin2_avpll_channel_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	.is_enabled	= berlin2_avpll_channel_is_enabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	.enable		= berlin2_avpll_channel_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	.disable	= berlin2_avpll_channel_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	.recalc_rate	= berlin2_avpll_channel_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)  * Another nice quirk:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)  * On some production SoCs, AVPLL channels are scrambled with respect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)  * to the channel numbering in the registers but still referenced by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)  * their original channel numbers. We deal with it by having a flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)  * and a translation table for the index.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) int __init berlin2_avpll_channel_register(void __iomem *base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 			   const char *name, u8 index, const char *parent_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 			   u8 ch_flags, unsigned long flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	struct berlin2_avpll_channel *ch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	struct clk_init_data init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	if (!ch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	ch->base = base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 		ch->index = quirk_index[index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 		ch->index = index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	ch->flags = ch_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	ch->hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	init.name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	init.ops = &berlin2_avpll_channel_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	init.parent_names = &parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	init.flags = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	return clk_hw_register(NULL, &ch->hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) }