^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * A hack to create a platform device from a DMI entry. This will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * allow autoloading of the IPMI drive based on SMBIOS entries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #define pr_fmt(fmt) "%s" fmt, "ipmi:dmi: "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #define dev_fmt pr_fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/ipmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/dmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/property.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include "ipmi_dmi.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include "ipmi_plat_data.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #define IPMI_DMI_TYPE_KCS 0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #define IPMI_DMI_TYPE_SMIC 0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #define IPMI_DMI_TYPE_BT 0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #define IPMI_DMI_TYPE_SSIF 0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) struct ipmi_dmi_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) enum si_type si_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) unsigned int space; /* addr space for si, intf# for ssif */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) u8 slave_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) struct ipmi_dmi_info *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) static struct ipmi_dmi_info *ipmi_dmi_infos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) static int ipmi_dmi_nr __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) static void __init dmi_add_platform_ipmi(unsigned long base_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) unsigned int space,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) u8 slave_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) int irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) int offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) int type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) struct ipmi_dmi_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) struct ipmi_plat_data p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) memset(&p, 0, sizeof(p));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) name = "dmi-ipmi-si";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) p.iftype = IPMI_PLAT_IF_SI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) switch (type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) case IPMI_DMI_TYPE_SSIF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) name = "dmi-ipmi-ssif";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) p.iftype = IPMI_PLAT_IF_SSIF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) p.type = SI_TYPE_INVALID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) case IPMI_DMI_TYPE_BT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) p.type = SI_BT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) case IPMI_DMI_TYPE_KCS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) p.type = SI_KCS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) case IPMI_DMI_TYPE_SMIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) p.type = SI_SMIC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) pr_err("Invalid IPMI type: %d\n", type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) p.addr = base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) p.space = space;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) p.regspacing = offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) p.irq = irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) p.slave_addr = slave_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) p.addr_source = SI_SMBIOS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) info = kmalloc(sizeof(*info), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) if (!info) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) pr_warn("Could not allocate dmi info\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) info->si_type = p.type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) info->space = space;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) info->addr = base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) info->slave_addr = slave_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) info->next = ipmi_dmi_infos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) ipmi_dmi_infos = info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) if (ipmi_platform_add(name, ipmi_dmi_nr, &p))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) ipmi_dmi_nr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) * Look up the slave address for a given interface. This is here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * because ACPI doesn't have a slave address while SMBIOS does, but we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) * prefer using ACPI so the ACPI code can use the IPMI namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) * This function allows an ACPI-specified IPMI device to look up the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) * slave address from the DMI table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) int ipmi_dmi_get_slave_addr(enum si_type si_type, unsigned int space,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) unsigned long base_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) struct ipmi_dmi_info *info = ipmi_dmi_infos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) while (info) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) if (info->si_type == si_type &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) info->space == space &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) info->addr == base_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) return info->slave_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) info = info->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) EXPORT_SYMBOL(ipmi_dmi_get_slave_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define DMI_IPMI_MIN_LENGTH 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) #define DMI_IPMI_VER2_LENGTH 0x12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #define DMI_IPMI_TYPE 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) #define DMI_IPMI_SLAVEADDR 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) #define DMI_IPMI_ADDR 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) #define DMI_IPMI_ACCESS 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #define DMI_IPMI_IRQ 0x11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) #define DMI_IPMI_IO_MASK 0xfffe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) static void __init dmi_decode_ipmi(const struct dmi_header *dm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) const u8 *data = (const u8 *) dm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) int space = IPMI_IO_ADDR_SPACE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) unsigned long base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) u8 len = dm->length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) u8 slave_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) int irq = 0, offset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) int type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) if (len < DMI_IPMI_MIN_LENGTH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) type = data[DMI_IPMI_TYPE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) slave_addr = data[DMI_IPMI_SLAVEADDR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) memcpy(&base_addr, data + DMI_IPMI_ADDR, sizeof(unsigned long));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) if (!base_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) pr_err("Base address is zero, assuming no IPMI interface\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) if (len >= DMI_IPMI_VER2_LENGTH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) if (type == IPMI_DMI_TYPE_SSIF) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) space = 0; /* Match I2C interface 0. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) base_addr = data[DMI_IPMI_ADDR] >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) if (base_addr == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * Some broken systems put the I2C address in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * the slave address field. We try to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) * accommodate them here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) base_addr = data[DMI_IPMI_SLAVEADDR] >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) slave_addr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) if (base_addr & 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) /* I/O */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) base_addr &= DMI_IPMI_IO_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) /* Memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) space = IPMI_MEM_ADDR_SPACE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) * If bit 4 of byte 0x10 is set, then the lsb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) * for the address is odd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) base_addr |= (data[DMI_IPMI_ACCESS] >> 4) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) irq = data[DMI_IPMI_IRQ];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) * The top two bits of byte 0x10 hold the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) * register spacing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) switch ((data[DMI_IPMI_ACCESS] >> 6) & 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) case 0: /* Byte boundaries */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) offset = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) case 1: /* 32-bit boundaries */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) offset = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) case 2: /* 16-byte boundaries */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) offset = 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) pr_err("Invalid offset: 0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) /* Old DMI spec. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) * Note that technically, the lower bit of the base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) * address should be 1 if the address is I/O and 0 if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) * the address is in memory. So many systems get that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * wrong (and all that I have seen are I/O) so we just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * ignore that bit and assume I/O. Systems that use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) * memory should use the newer spec, anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) base_addr = base_addr & DMI_IPMI_IO_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) offset = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) dmi_add_platform_ipmi(base_addr, space, slave_addr, irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) offset, type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) static int __init scan_for_dmi_ipmi(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) const struct dmi_device *dev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) dmi_decode_ipmi((const struct dmi_header *) dev->device_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) subsys_initcall(scan_for_dmi_ipmi);