Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Arch specific cpu topology information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2016, ARM Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Written by: Juri Lelli, ARM Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/acpi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/sched/topology.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/cpuset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/cpumask.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/percpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <trace/hooks/topology.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) bool topology_scale_freq_invariant(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 	return cpufreq_supports_freq_invariance() ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 	       arch_freq_counters_available(cpu_online_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) __weak bool arch_freq_counters_available(const struct cpumask *cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) EXPORT_PER_CPU_SYMBOL_GPL(freq_scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 			     unsigned long max_freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	unsigned long scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	 * If the use of counters for FIE is enabled, just return as we don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	 * want to update the scale factor with information from CPUFREQ.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	if (arch_freq_counters_available(cpus))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	trace_android_vh_arch_set_freq_scale(cpus, cur_freq, max_freq, &scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	for_each_cpu(i, cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 		per_cpu(freq_scale, i) = scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	per_cpu(cpu_scale, cpu) = capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) DEFINE_PER_CPU(unsigned long, thermal_pressure);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) EXPORT_PER_CPU_SYMBOL_GPL(thermal_pressure);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) void topology_set_thermal_pressure(const struct cpumask *cpus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 			       unsigned long th_pressure)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	for_each_cpu(cpu, cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) static ssize_t cpu_capacity_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 				 struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 				 char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	struct cpu *cpu = container_of(dev, struct cpu, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) static void update_topology_flags_workfn(struct work_struct *work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) static DEVICE_ATTR_RO(cpu_capacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) static int register_cpu_capacity_sysctl(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	struct device *cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		cpu = get_cpu_device(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 		if (!cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 			pr_err("%s: too early to get CPU%d device!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 			       __func__, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		device_create_file(cpu, &dev_attr_cpu_capacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) subsys_initcall(register_cpu_capacity_sysctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) static int update_topology;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) bool topology_update_done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) EXPORT_SYMBOL_GPL(topology_update_done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) int topology_update_cpu_topology(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	return update_topology;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)  * Updating the sched_domains can't be done directly from cpufreq callbacks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)  * due to locking, so queue the work for later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) static void update_topology_flags_workfn(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	update_topology = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	rebuild_sched_domains();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	topology_update_done = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	trace_android_vh_update_topology_flags_workfn(NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	update_topology = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) static DEFINE_PER_CPU(u32, freq_factor) = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) static u32 *raw_capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) static int free_raw_capacity(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	kfree(raw_capacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	raw_capacity = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) void topology_normalize_cpu_scale(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	u64 capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	u64 capacity_scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	if (!raw_capacity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	capacity_scale = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		capacity_scale = max(capacity, capacity_scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 			capacity_scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		topology_set_cpu_scale(cpu, capacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 			cpu, topology_get_cpu_scale(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	struct clk *cpu_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	static bool cap_parsing_failed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	u32 cpu_capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	if (cap_parsing_failed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 				   &cpu_capacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		if (!raw_capacity) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 			raw_capacity = kcalloc(num_possible_cpus(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 					       sizeof(*raw_capacity),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 					       GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 			if (!raw_capacity) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 				cap_parsing_failed = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 				return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		raw_capacity[cpu] = cpu_capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 			cpu_node, raw_capacity[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		 * Update freq_factor for calculating early boot cpu capacities.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 		 * For non-clk CPU DVFS mechanism, there's no way to get the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 		 * frequency value now, assuming they are running at the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		 * frequency (by keeping the initial freq_factor value).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		cpu_clk = of_clk_get(cpu_node, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 			per_cpu(freq_factor, cpu) =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 				clk_get_rate(cpu_clk) / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 			clk_put(cpu_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		if (raw_capacity) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 				cpu_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 		cap_parsing_failed = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		free_raw_capacity();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	return !ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) #ifdef CONFIG_CPU_FREQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) static cpumask_var_t cpus_to_visit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) static void parsing_done_workfn(struct work_struct *work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) init_cpu_capacity_callback(struct notifier_block *nb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 			   unsigned long val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 			   void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	struct cpufreq_policy *policy = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	if (!raw_capacity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	if (val != CPUFREQ_CREATE_POLICY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 		 cpumask_pr_args(policy->related_cpus),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 		 cpumask_pr_args(cpus_to_visit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	for_each_cpu(cpu, policy->related_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	if (cpumask_empty(cpus_to_visit)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 		topology_normalize_cpu_scale();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 		schedule_work(&update_topology_flags_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 		free_raw_capacity();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		pr_debug("cpu_capacity: parsing done\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 		schedule_work(&parsing_done_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) static struct notifier_block init_cpu_capacity_notifier = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	.notifier_call = init_cpu_capacity_callback,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) static int __init register_cpufreq_notifier(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	 * on ACPI-based systems we need to use the default cpu capacity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	 * until we have the necessary code to parse the cpu capacity, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	 * skip registering cpufreq notifier.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	if (!acpi_disabled || !raw_capacity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 					CPUFREQ_POLICY_NOTIFIER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		free_cpumask_var(cpus_to_visit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) core_initcall(register_cpufreq_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) static void parsing_done_workfn(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 					 CPUFREQ_POLICY_NOTIFIER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	free_cpumask_var(cpus_to_visit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) core_initcall(free_raw_capacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)  * This function returns the logic cpu number of the node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)  * There are basically three kinds of return values:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)  * (1) logic cpu number which is > 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)  * there is no possible logical CPU in the kernel to match. This happens
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)  * when CONFIG_NR_CPUS is configure to be smaller than the number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)  * CPU nodes in DT. We need to just ignore this case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)  * (3) -1 if the node does not exist in the device tree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) static int __init get_cpu_for_node(struct device_node *node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	struct device_node *cpu_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	cpu_node = of_parse_phandle(node, "cpu", 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	if (!cpu_node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	cpu = of_cpu_node_to_id(cpu_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	if (cpu >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		topology_parse_cpu_capacity(cpu_node, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 			cpu_node, cpumask_pr_args(cpu_possible_mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	of_node_put(cpu_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	return cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) static int __init parse_core(struct device_node *core, int package_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 			     int core_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	char name[20];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	bool leaf = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	struct device_node *t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 		snprintf(name, sizeof(name), "thread%d", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 		t = of_get_child_by_name(core, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 		if (t) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 			leaf = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 			cpu = get_cpu_for_node(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 			if (cpu >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 				cpu_topology[cpu].package_id = package_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 				cpu_topology[cpu].core_id = core_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 				cpu_topology[cpu].thread_id = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 			} else if (cpu != -ENODEV) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 				pr_err("%pOF: Can't get CPU for thread\n", t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 				of_node_put(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 				return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 			of_node_put(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 		i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	} while (t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	cpu = get_cpu_for_node(core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	if (cpu >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 		if (!leaf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 			pr_err("%pOF: Core has both threads and CPU\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 			       core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 		cpu_topology[cpu].package_id = package_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		cpu_topology[cpu].core_id = core_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	} else if (leaf && cpu != -ENODEV) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) static int __init parse_cluster(struct device_node *cluster, int depth)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	char name[20];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	bool leaf = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	bool has_cores = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	struct device_node *c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	static int package_id __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	int core_id = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	int i, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	 * First check for child clusters; we currently ignore any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	 * information about the nesting of clusters and present the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	 * scheduler with a flat list of them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 		snprintf(name, sizeof(name), "cluster%d", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		c = of_get_child_by_name(cluster, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 		if (c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 			leaf = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 			ret = parse_cluster(c, depth + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 			of_node_put(c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 			if (ret != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 		i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	} while (c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	/* Now check for cores */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 		snprintf(name, sizeof(name), "core%d", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		c = of_get_child_by_name(cluster, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		if (c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 			has_cores = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 			if (depth == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 				pr_err("%pOF: cpu-map children should be clusters\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 				       c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 				of_node_put(c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 				return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 			if (leaf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 				ret = parse_core(c, package_id, core_id++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 				pr_err("%pOF: Non-leaf cluster with core %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 				       cluster, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 				ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 			of_node_put(c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 			if (ret != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 		i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	} while (c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	if (leaf && !has_cores)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 		pr_warn("%pOF: empty cluster\n", cluster);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	if (leaf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 		package_id++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) static int __init parse_dt_topology(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	struct device_node *cn, *map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	cn = of_find_node_by_path("/cpus");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	if (!cn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		pr_err("No CPU information found in DT\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	 * When topology is provided cpu-map is essentially a root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	 * cluster with restricted subnodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	map = of_get_child_by_name(cn, "cpu-map");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	if (!map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	ret = parse_cluster(map, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	if (ret != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 		goto out_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	topology_normalize_cpu_scale();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	 * Check that all cores are in the topology; the SMP code will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	 * only mark cores described in the DT as possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 		if (cpu_topology[cpu].package_id == -1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) out_map:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	of_node_put(map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	of_node_put(cn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498)  * cpu topology table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) struct cpu_topology cpu_topology[NR_CPUS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) EXPORT_SYMBOL_GPL(cpu_topology);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) const struct cpumask *cpu_coregroup_mask(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	/* Find the smaller of NUMA, core or LLC siblings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		/* not numa in package, lets use the package siblings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 		core_mask = &cpu_topology[cpu].core_sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 	if (cpu_topology[cpu].llc_id != -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 			core_mask = &cpu_topology[cpu].llc_sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	return core_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) void update_siblings_masks(unsigned int cpuid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	/* update core and thread sibling masks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 		cpu_topo = &cpu_topology[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 		if (cpuid_topo->package_id != cpu_topo->package_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 		if (cpuid_topo->core_id != cpu_topo->core_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) static void clear_cpu_topology(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	cpumask_clear(&cpu_topo->llc_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	cpumask_clear(&cpu_topo->core_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	cpumask_clear(&cpu_topo->thread_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) void __init reset_cpu_topology(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		cpu_topo->thread_id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 		cpu_topo->core_id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 		cpu_topo->package_id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 		cpu_topo->llc_id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		clear_cpu_topology(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) void remove_cpu_topology(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	int sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	for_each_cpu(sibling, topology_core_cpumask(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	clear_cpu_topology(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) __weak int __init parse_acpi_topology(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) void __init init_cpu_topology(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	reset_cpu_topology();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	 * Discard anything that was parsed if we hit an error so we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	 * don't use partial information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	if (parse_acpi_topology())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 		reset_cpu_topology();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	else if (of_have_populated_dt() && parse_dt_topology())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 		reset_cpu_topology();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) #endif