Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * (C) Copyright 2014, 2015 Linaro Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * CPPC describes a few methods for controlling CPU performance using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * information from a per CPU table called CPC. This table is described in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * the ACPI v5.0+ specification. The table consists of a list of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * registers which may be memory mapped or hardware registers and also may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * include some static integer values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  * CPU performance is on an abstract continuous scale as against a discretized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * P-state scale which is tied to CPU frequency only. In brief, the basic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  * operation involves:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  * - OS makes a CPU performance request. (Can provide min and max bounds)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  * - Platform (such as BMC) is free to optimize request within requested bounds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  *   depending on power/thermal budgets etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  * - Platform conveys its decision back to OS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)  * The communication between OS and platform occurs through another medium
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)  * called (PCC) Platform Communication Channel. This is a generic mailbox like
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)  * mechanism which includes doorbell semantics to indicate register updates.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  * See drivers/mailbox/pcc.c for details on PCC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  * above specifications.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #define pr_fmt(fmt)	"ACPI CPPC: " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #include <linux/iopoll.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #include <linux/ktime.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include <linux/rwsem.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include <linux/wait.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #include <acpi/cppc_acpi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) struct cppc_pcc_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 	struct mbox_chan *pcc_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 	void __iomem *pcc_comm_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 	bool pcc_channel_acquired;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 	unsigned int deadline_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	 * Lock to provide controlled access to the PCC channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 	 * For performance critical usecases(currently cppc_set_perf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 	 *	We need to take read_lock and check if channel belongs to OSPM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 	 * before reading or writing to PCC subspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 	 *	We need to take write_lock before transferring the channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 	 * ownership to the platform via a Doorbell
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 	 *	This allows us to batch a number of CPPC requests if they happen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 	 * to originate in about the same time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 	 * For non-performance critical usecases(init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 	 *	Take write_lock for all purposes which gives exclusive access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 	struct rw_semaphore pcc_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	/* Wait queue for CPUs whose requests were batched */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 	wait_queue_head_t pcc_write_wait_q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 	ktime_t last_cmd_cmpl_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 	ktime_t last_mpar_reset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 	int mpar_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 	int refcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) /* Array to represent the PCC channel per subspace ID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86)  * The cpc_desc structure contains the ACPI register details
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87)  * as described in the per CPU _CPC tables. The details
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88)  * include the type of register (e.g. PCC, System IO, FFH etc.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89)  * and destination addresses which lets us READ/WRITE CPU performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90)  * information using the appropriate I/O methods.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) /* pcc mapped address + header size + offset within PCC subspace */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 						0x8 + (offs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) /* Check if a CPC register is in PCC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 				(cpc)->cpc_entry.reg.space_id ==	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 				ACPI_ADR_SPACE_PLATFORM_COMM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) /* Evalutes to True if reg is a NULL register descriptor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 				(reg)->address == 0 &&			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 				(reg)->bit_width == 0 &&		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 				(reg)->bit_offset == 0 &&		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 				(reg)->access_width == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) /* Evalutes to True if an optional cpc field is supported */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 				!!(cpc)->cpc_entry.int_value :		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115)  * Arbitrary Retries in case the remote processor is slow to respond
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116)  * to PCC commands. Keeping it high enough to cover emulators where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117)  * the processors run painfully slow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) #define NUM_RETRIES 500ULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) #define define_one_cppc_ro(_name)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) static struct kobj_attribute _name =		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) __ATTR(_name, 0444, show_##_name, NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) #define show_cppc_data(access_fn, struct_name, member_name)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	static ssize_t show_##member_name(struct kobject *kobj,		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 				struct kobj_attribute *attr, char *buf)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	{								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 		struct struct_name st_name = {0};			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 		int ret;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 		if (ret)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 			return ret;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 				(u64)st_name.member_name);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	}								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	define_one_cppc_ro(member_name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) static ssize_t show_feedback_ctrs(struct kobject *kobj,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 		struct kobj_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 			fb_ctrs.reference, fb_ctrs.delivered);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) define_one_cppc_ro(feedback_ctrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) static struct attribute *cppc_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	&feedback_ctrs.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	&reference_perf.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 	&wraparound_time.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 	&highest_perf.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 	&lowest_perf.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	&lowest_nonlinear_perf.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	&nominal_perf.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	&nominal_freq.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	&lowest_freq.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) static struct kobj_type cppc_ktype = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	.sysfs_ops = &kobj_sysfs_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 	.default_attrs = cppc_attrs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	int ret, status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 		pcc_ss_data->pcc_comm_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	if (!pcc_ss_data->platform_owns_pcc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	 * Poll PCC status register every 3us(delay_us) for maximum of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 					status & PCC_CMD_COMPLETE_MASK, 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 					pcc_ss_data->deadline_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	if (likely(!ret)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 		pcc_ss_data->platform_owns_pcc = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 		if (chk_err_bit && (status & PCC_ERROR_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 			ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 	if (unlikely(ret))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 		       pcc_ss_id, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220)  * This function transfers the ownership of the PCC to the platform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221)  * So it must be called while holding write_lock(pcc_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	int ret = -EIO, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 	struct acpi_pcct_shared_memory *generic_comm_base =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	unsigned int time_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	 * For CMD_WRITE we know for a fact the caller should have checked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	 * the channel before writing to PCC space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	if (cmd == CMD_READ) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 		 * If there are pending cpc_writes, then we stole the channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 		 * before write completion, so first send a WRITE command to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 		 * platform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 		if (pcc_ss_data->pending_pcc_write_cmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 		ret = check_pcc_chan(pcc_ss_id, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 			goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	} else /* CMD_WRITE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	 * Handle the Minimum Request Turnaround Time(MRTT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	 * "The minimum amount of time that OSPM must wait after the completion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	 * of a command before issuing the next command, in microseconds"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	if (pcc_ss_data->pcc_mrtt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 		time_delta = ktime_us_delta(ktime_get(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 					    pcc_ss_data->last_cmd_cmpl_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 		if (pcc_ss_data->pcc_mrtt > time_delta)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	 * "The maximum number of periodic requests that the subspace channel can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	 * support, reported in commands per minute. 0 indicates no limitation."
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	 * This parameter should be ideally zero or large enough so that it can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	 * handle maximum number of requests that all the cores in the system can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	 * collectively generate. If it is not, we will follow the spec and just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	 * not send the request to the platform after hitting the MPAR limit in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	 * any 60s window
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	if (pcc_ss_data->pcc_mpar) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 		if (pcc_ss_data->mpar_count == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 			time_delta = ktime_ms_delta(ktime_get(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 						    pcc_ss_data->last_mpar_reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 					 pcc_ss_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 				ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 				goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 			pcc_ss_data->last_mpar_reset = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 		pcc_ss_data->mpar_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	/* Write to the shared comm region. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 	writew_relaxed(cmd, &generic_comm_base->command);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	/* Flip CMD COMPLETE bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 	writew_relaxed(0, &generic_comm_base->status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	pcc_ss_data->platform_owns_pcc = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	/* Ring doorbell */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 		       pcc_ss_id, cmd, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 		goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	/* wait for completion and check for PCC errro bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	ret = check_pcc_chan(pcc_ss_id, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	if (pcc_ss_data->pcc_mrtt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) end:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	if (cmd == CMD_WRITE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 		if (unlikely(ret)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 			for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 				if (!desc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 					desc->write_cmd_status = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 		pcc_ss_data->pcc_write_cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 				*(u16 *)msg, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 				*(u16 *)msg, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) static struct mbox_client cppc_mbox_cl = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 	.tx_done = cppc_chan_tx_done,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	.knows_txdone = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	int result = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	acpi_status status = AE_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	struct acpi_buffer state = {0, NULL};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	union acpi_object  *psd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	struct acpi_psd_package *pdomain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 					    &buffer, ACPI_TYPE_PACKAGE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	if (ACPI_FAILURE(status))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	psd = buffer.pointer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	if (!psd || psd->package.count != 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 		pr_debug("Invalid _PSD data\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 		goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	pdomain = &(cpc_ptr->domain_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	state.length = sizeof(struct acpi_psd_package);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	state.pointer = pdomain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	status = acpi_extract_package(&(psd->package.elements[0]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 		&format, &state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	if (ACPI_FAILURE(status)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 		goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 		goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 		goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 		goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	result = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) end:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 	kfree(buffer.pointer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	return result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409)  * acpi_get_psd_map - Map the CPUs in a common freq domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410)  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412)  *	Return: 0 for success or negative value for err.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	int count_target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	int retval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	unsigned int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	cpumask_var_t covered_cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	struct cppc_cpudata *pr, *match_pr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	struct acpi_psd_package *pdomain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	struct acpi_psd_package *match_pdomain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	 * Now that we have _PSD data from all CPUs, let's setup P-state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 	 * domain info.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 		if (cpumask_test_cpu(i, covered_cpus))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 		pr = all_cpu_data[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 		cpc_ptr = per_cpu(cpc_desc_ptr, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 		if (!cpc_ptr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 			retval = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 			goto err_ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 		pdomain = &(cpc_ptr->domain_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 		cpumask_set_cpu(i, pr->shared_cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		cpumask_set_cpu(i, covered_cpus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		if (pdomain->num_processors <= 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 		/* Validate the Domain info */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 		count_target = pdomain->num_processors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 		for_each_possible_cpu(j) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 			if (i == j)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 			if (!match_cpc_ptr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 				retval = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 				goto err_ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 			match_pdomain = &(match_cpc_ptr->domain_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 			if (match_pdomain->domain != pdomain->domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 			/* Here i and j are in the same domain */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 			if (match_pdomain->num_processors != count_target) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 				retval = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 				goto err_ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 			if (pdomain->coord_type != match_pdomain->coord_type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 				retval = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 				goto err_ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 			cpumask_set_cpu(j, covered_cpus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 			cpumask_set_cpu(j, pr->shared_cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 		for_each_cpu(j, pr->shared_cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 			if (i == j)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 			match_pr = all_cpu_data[j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 			match_pr->shared_type = pr->shared_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 			cpumask_copy(match_pr->shared_cpu_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 				     pr->shared_cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) err_ret:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 		pr = all_cpu_data[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 		/* Assume no coordination on any error parsing domain info */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 		cpumask_clear(pr->shared_cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 		cpumask_set_cpu(i, pr->shared_cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 		pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	free_cpumask_var(covered_cpus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	return retval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) EXPORT_SYMBOL_GPL(acpi_get_psd_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) static int register_pcc_channel(int pcc_ss_idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	struct acpi_pcct_hw_reduced *cppc_ss;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 	u64 usecs_lat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	if (pcc_ss_idx >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 		pcc_data[pcc_ss_idx]->pcc_channel =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 			pr_err("Failed to find PCC channel for subspace %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 			       pcc_ss_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 		 * The PCC mailbox controller driver should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 		 * have parsed the PCCT (global table of all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 		 * PCC channels) and stored pointers to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 		 * subspace communication region in con_priv.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 		if (!cppc_ss) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 			pr_err("No PCC subspace found for %d CPPC\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 			       pcc_ss_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 		 * cppc_ss->latency is just a Nominal value. In reality
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 		 * the remote processor could be much slower to reply.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 		 * So add an arbitrary amount of wait on top of Nominal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 		usecs_lat = NUM_RETRIES * cppc_ss->latency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 			       pcc_ss_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		/* Set flag so that we don't come here for each CPU. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570)  * cpc_ffh_supported() - check if FFH reading supported
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572)  * Check if the architecture has support for functional fixed hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573)  * read/write capability.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575)  * Return: true for supported, false for not supported
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) bool __weak cpc_ffh_supported(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583)  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585)  * Check and allocate the cppc_pcc_data memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586)  * In some processor configurations it is possible that same subspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587)  * is shared between multiple CPUs. This is seen especially in CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588)  * with hardware multi-threading support.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590)  * Return: 0 for success, errno for failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) static int pcc_data_alloc(int pcc_ss_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	if (pcc_data[pcc_ss_id]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 		pcc_data[pcc_ss_id]->refcount++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 					      GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		if (!pcc_data[pcc_ss_id])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 		pcc_data[pcc_ss_id]->refcount++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) /* Check if CPPC revision + num_ent combination is supported */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) static bool is_cppc_supported(int revision, int num_ent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 	int expected_num_ent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 	switch (revision) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	case CPPC_V2_REV:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 		expected_num_ent = CPPC_V2_NUM_ENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	case CPPC_V3_REV:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 		expected_num_ent = CPPC_V3_NUM_ENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 			revision);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	if (expected_num_ent != num_ent) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 			num_ent, expected_num_ent, revision);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638)  * An example CPC table looks like the following.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640)  *	Name(_CPC, Package()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641)  *			{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642)  *			17,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643)  *			NumEntries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644)  *			1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645)  *			// Revision
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646)  *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647)  *			// Highest Performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648)  *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649)  *			// Nominal Performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650)  *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651)  *			// Lowest Nonlinear Performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652)  *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653)  *			// Lowest Performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654)  *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655)  *			// Guaranteed Performance Register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656)  *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657)  *			// Desired Performance Register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658)  *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659)  *			..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660)  *			..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661)  *			..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663)  *		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664)  * Each Register() encodes how to access that specific register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665)  * e.g. a sample PCC entry has the following encoding:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667)  *	Register (
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668)  *		PCC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669)  *		AddressSpaceKeyword
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670)  *		8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671)  *		//RegisterBitWidth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672)  *		8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673)  *		//RegisterBitOffset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674)  *		0x30,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675)  *		//RegisterAddress
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676)  *		9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677)  *		//AccessSize (subspace ID)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678)  *		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679)  *		)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680)  *	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684)  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685)  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687)  *	Return: 0 for success or negative value for err.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) int acpi_cppc_processor_probe(struct acpi_processor *pr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	union acpi_object *out_obj, *cpc_obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	struct cpc_desc *cpc_ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	struct cpc_reg *gas_t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	struct device *cpu_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	acpi_handle handle = pr->handle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	unsigned int num_ent, i, cpc_rev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 	int pcc_subspace_id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	acpi_status status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 	int ret = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	/* Parse the ACPI _CPC table for this CPU. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 			ACPI_TYPE_PACKAGE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	if (ACPI_FAILURE(status)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 		ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 		goto out_buf_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	out_obj = (union acpi_object *) output.pointer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	if (!cpc_ptr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 		goto out_buf_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	/* First entry is NumEntries. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	cpc_obj = &out_obj->package.elements[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 		num_ent = cpc_obj->integer.value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 		if (num_ent <= 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 				 num_ent, pr->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 			goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		pr_debug("Unexpected entry type(%d) for NumEntries\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 				cpc_obj->type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	cpc_ptr->num_entries = num_ent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	/* Second entry should be revision. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	cpc_obj = &out_obj->package.elements[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 		cpc_rev = cpc_obj->integer.value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 		pr_debug("Unexpected entry type(%d) for Revision\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 				cpc_obj->type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	cpc_ptr->version = cpc_rev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	if (!is_cppc_supported(cpc_rev, num_ent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	/* Iterate through remaining entries in _CPC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	for (i = 2; i < num_ent; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 		cpc_obj = &out_obj->package.elements[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 			gas_t = (struct cpc_reg *)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 				cpc_obj->buffer.pointer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 			 * The PCC Subspace index is encoded inside
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 			 * the CPC table entries. The same PCC index
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 			 * will be used for all the PCC entries,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 			 * so extract it only once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 				if (pcc_subspace_id < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 					pcc_subspace_id = gas_t->access_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 					if (pcc_data_alloc(pcc_subspace_id))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 						goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 				} else if (pcc_subspace_id != gas_t->access_width) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 					pr_debug("Mismatched PCC ids.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 					goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 				if (gas_t->address) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 					void __iomem *addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 					if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 						goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 					/* Support only PCC ,SYS MEM and FFH type regs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 					goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 			goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	 * Initialize the remaining cpc_regs as unsupported.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	/* Store CPU Logical ID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	cpc_ptr->cpu_id = pr->id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	/* Parse PSD data for this CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	ret = acpi_get_psd(cpc_ptr, handle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	/* Register PCC channel once for all PCC subspace ID. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 		ret = register_pcc_channel(pcc_subspace_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 			goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	/* Everything looks okay */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 	/* Add per logical CPU nodes for reading its feedback counters. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 	cpu_dev = get_cpu_device(pr->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 	if (!cpu_dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	/* Plug PSD data into this CPU's CPC descriptor. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 			"acpi_cppc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		kobject_put(&cpc_ptr->kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	kfree(output.pointer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) out_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	/* Free all the mapped sys mem areas for this CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	for (i = 2; i < cpc_ptr->num_entries; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 		if (addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 			iounmap(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	kfree(cpc_ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) out_buf_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	kfree(output.pointer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870)  * acpi_cppc_processor_exit - Cleanup CPC structs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871)  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873)  * Return: Void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) void acpi_cppc_processor_exit(struct acpi_processor *pr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	struct cpc_desc *cpc_ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	void __iomem *addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 			pcc_data[pcc_ss_id]->refcount--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 			if (!pcc_data[pcc_ss_id]->refcount) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 				kfree(pcc_data[pcc_ss_id]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 				pcc_data[pcc_ss_id] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	if (!cpc_ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	/* Free all the mapped sys mem areas for this CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	for (i = 2; i < cpc_ptr->num_entries; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 		if (addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 			iounmap(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	kobject_put(&cpc_ptr->kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	kfree(cpc_ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910)  * cpc_read_ffh() - Read FFH register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911)  * @cpunum:	CPU number to read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912)  * @reg:	cppc register information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913)  * @val:	place holder for return value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915)  * Read bit_width bits from a specified address and bit_offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917)  * Return: 0 for success and error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	return -ENOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925)  * cpc_write_ffh() - Write FFH register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926)  * @cpunum:	CPU number to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927)  * @reg:	cppc register information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928)  * @val:	value to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930)  * Write value of bit_width bits to a specified address and bit_offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932)  * Return: 0 for success and error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	return -ENOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940)  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941)  * as fast as possible. We have already mapped the PCC subspace during init, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942)  * we can directly write to it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	int ret_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	void __iomem *vaddr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	if (reg_res->type == ACPI_TYPE_INTEGER) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		*val = reg_res->cpc_entry.int_value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 		return ret_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	*val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 		vaddr = reg_res->sys_mem_vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 		return cpc_read_ffh(cpu, reg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 		return acpi_os_read_memory((acpi_physical_address)reg->address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 				val, reg->bit_width);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	switch (reg->bit_width) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 		case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 			*val = readb_relaxed(vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 		case 16:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 			*val = readw_relaxed(vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		case 32:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 			*val = readl_relaxed(vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		case 64:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 			*val = readq_relaxed(vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 				 reg->bit_width, pcc_ss_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 			ret_val = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	return ret_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	int ret_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	void __iomem *vaddr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 		vaddr = reg_res->sys_mem_vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 		return cpc_write_ffh(cpu, reg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		return acpi_os_write_memory((acpi_physical_address)reg->address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 				val, reg->bit_width);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	switch (reg->bit_width) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 		case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 			writeb_relaxed(val, vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 		case 16:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 			writew_relaxed(val, vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 		case 32:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 			writel_relaxed(val, vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 		case 64:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 			writeq_relaxed(val, vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 				 reg->bit_width, pcc_ss_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 			ret_val = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	return ret_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031)  * cppc_get_desired_perf - Get the value of desired performance register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032)  * @cpunum: CPU from which to get desired performance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033)  * @desired_perf: address of a variable to store the returned desired performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035)  * Return: 0 for success, -EIO otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	struct cpc_register_resource *desired_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	struct cppc_pcc_data *pcc_ss_data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	if (CPC_IN_PCC(desired_reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 		int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 		if (pcc_ss_id < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 		pcc_ss_data = pcc_data[pcc_ss_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 		down_write(&pcc_ss_data->pcc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 			cpc_read(cpunum, desired_reg, desired_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 			ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 		up_write(&pcc_ss_data->pcc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	cpc_read(cpunum, desired_reg, desired_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073)  * cppc_get_perf_caps - Get a CPU's performance capabilities.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074)  * @cpunum: CPU from which to get capabilities info.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075)  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077)  * Return: 0 for success with perf_caps populated else -ERRNO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	struct cpc_register_resource *highest_reg, *lowest_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	struct cppc_pcc_data *pcc_ss_data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	int ret = 0, regs_in_pcc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	if (!cpc_desc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	/* Are any of the regs PCC ?*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 		if (pcc_ss_id < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 			pr_debug("Invalid pcc_ss_id\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 		pcc_ss_data = pcc_data[pcc_ss_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 		regs_in_pcc = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 		down_write(&pcc_ss_data->pcc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 		/* Ring doorbell once to update PCC subspace */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 			ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 			goto out_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	cpc_read(cpunum, highest_reg, &high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	perf_caps->highest_perf = high;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	cpc_read(cpunum, lowest_reg, &low);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	perf_caps->lowest_perf = low;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 	cpc_read(cpunum, nominal_reg, &nom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	perf_caps->nominal_perf = nom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 		perf_caps->guaranteed_perf = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 		perf_caps->guaranteed_perf = guaranteed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	if (!high || !low || !nom || !min_nonlinear)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 		ret = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 	/* Read optional lowest and nominal frequencies if present */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	if (CPC_SUPPORTED(low_freq_reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 		cpc_read(cpunum, low_freq_reg, &low_f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 	if (CPC_SUPPORTED(nom_freq_reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 		cpc_read(cpunum, nom_freq_reg, &nom_f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	perf_caps->lowest_freq = low_f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	perf_caps->nominal_freq = nom_f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) out_err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	if (regs_in_pcc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 		up_write(&pcc_ss_data->pcc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163)  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164)  * @cpunum: CPU from which to read counters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165)  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167)  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	struct cpc_register_resource *delivered_reg, *reference_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 		*ref_perf_reg, *ctr_wrap_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	struct cppc_pcc_data *pcc_ss_data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	u64 delivered, reference, ref_perf, ctr_wrap_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	int ret = 0, regs_in_pcc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	if (!cpc_desc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	 * If reference perf register is not supported then we should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	 * use the nominal perf value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	if (!CPC_SUPPORTED(ref_perf_reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	/* Are any of the regs PCC ?*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 		if (pcc_ss_id < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 			pr_debug("Invalid pcc_ss_id\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 		pcc_ss_data = pcc_data[pcc_ss_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 		down_write(&pcc_ss_data->pcc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 		regs_in_pcc = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 		/* Ring doorbell once to update PCC subspace */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 			ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 			goto out_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	cpc_read(cpunum, delivered_reg, &delivered);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	cpc_read(cpunum, reference_reg, &reference);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	 * performance counters are assumed to never wrap during the lifetime of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	 * platform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 	ctr_wrap_time = (u64)(~((u64)0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	if (CPC_SUPPORTED(ctr_wrap_reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 	if (!delivered || !reference ||	!ref_perf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 		ret = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 		goto out_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 	perf_fb_ctrs->delivered = delivered;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 	perf_fb_ctrs->reference = reference;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	perf_fb_ctrs->reference_perf = ref_perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) out_err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 	if (regs_in_pcc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 		up_write(&pcc_ss_data->pcc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243)  * cppc_set_perf - Set a CPU's performance controls.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244)  * @cpu: CPU for which to set performance controls.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245)  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247)  * Return: 0 for success, -ERRNO otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	struct cpc_register_resource *desired_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	struct cppc_pcc_data *pcc_ss_data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	if (!cpc_desc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	 * This is Phase-I where we want to write to CPC registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	 * -> We want all CPUs to be able to execute this phase in parallel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 	 * achieve that goal here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 	if (CPC_IN_PCC(desired_reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 		if (pcc_ss_id < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 			pr_debug("Invalid pcc_ss_id\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 		pcc_ss_data = pcc_data[pcc_ss_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 		if (pcc_ss_data->platform_owns_pcc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 			ret = check_pcc_chan(pcc_ss_id, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 			if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 				up_read(&pcc_ss_data->pcc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 		 * Update the pending_write to make sure a PCC CMD_READ will not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 		 * arrive and steal the channel during the switch to write lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 		pcc_ss_data->pending_pcc_write_cmd = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 		cpc_desc->write_cmd_status = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 	 * Skip writing MIN/MAX until Linux knows how to come up with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 	 * useful values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	if (CPC_IN_PCC(desired_reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 	 * This is Phase-II where we transfer the ownership of PCC to Platform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 	 * Short Summary: Basically if we think of a group of cppc_set_perf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	 * requests that happened in short overlapping interval. The last CPU to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	 * We have the following requirements for Phase-II:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	 *     1. We want to execute Phase-II only when there are no CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 	 * currently executing in Phase-I
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 	 * entering Phase-I.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	 *     3. We want only one CPU among all those who went through Phase-I
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	 * to run phase-II
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 	 * If write_trylock fails to get the lock and doesn't transfer the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	 * PCC ownership to the platform, then one of the following will be TRUE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	 *     1. There is at-least one CPU in Phase-I which will later execute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	 * write_trylock, so the CPUs in Phase-I will be responsible for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	 * executing the Phase-II.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 	 *     2. Some other CPU has beaten this CPU to successfully execute the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 	 * write_trylock and has already acquired the write_lock. We know for a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 	 * before this CPU's Phase-I as we held the read_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 	 * down_write, in which case, send_pcc_cmd will check for pending
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	 * So this CPU can be certain that its request will be delivered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	 *    So in all cases, this CPU knows that its request will be delivered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	 * by another CPU and can return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 	 * After getting the down_write we still need to check for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	 * pending_pcc_write_cmd to take care of the following scenario
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 	 *    The thread running this code could be scheduled out between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 	 * could have delivered the request to Platform by triggering the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	 * doorbell and transferred the ownership of PCC to platform. So this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	 * avoids triggering an unnecessary doorbell and more importantly before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 	 * triggering the doorbell it makes sure that the PCC channel ownership
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 	 * is still with OSPM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	 * case during a CMD_READ and if there are pending writes it delivers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	 * the write command before servicing the read command
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 	if (CPC_IN_PCC(desired_reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 			/* Update only if there are pending write commands */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 			if (pcc_ss_data->pending_pcc_write_cmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 			wait_event(pcc_ss_data->pcc_write_wait_q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 		/* send_pcc_cmd updates the status in case of failure */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 		ret = cpc_desc->write_cmd_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) EXPORT_SYMBOL_GPL(cppc_set_perf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367)  * cppc_get_transition_latency - returns frequency transition latency in ns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369)  * ACPI CPPC does not explicitly specifiy how a platform can specify the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370)  * transition latency for perfromance change requests. The closest we have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371)  * is the timing information from the PCCT tables which provides the info
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372)  * on the number and frequency of PCC commands the platform can handle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) unsigned int cppc_get_transition_latency(int cpu_num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	 * Expected transition latency is based on the PCCT timing values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	 * Below are definition from ACPI spec:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	 * pcc_nominal- Expected latency to process a command, in microseconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	 *              channel can support, reported in commands per minute. 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	 *              indicates no limitation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	 *              completion of a command before issuing the next command,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 	 *              in microseconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 	unsigned int latency_ns = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 	struct cpc_desc *cpc_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 	struct cpc_register_resource *desired_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	struct cppc_pcc_data *pcc_ss_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 	if (!cpc_desc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 		return CPUFREQ_ETERNAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	if (!CPC_IN_PCC(desired_reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 		return CPUFREQ_ETERNAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	if (pcc_ss_id < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 		return CPUFREQ_ETERNAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	pcc_ss_data = pcc_data[pcc_ss_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	if (pcc_ss_data->pcc_mpar)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 	return latency_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) EXPORT_SYMBOL_GPL(cppc_get_transition_latency);