^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * VMAC: Message Authentication Code using Universal Hashing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (c) 2009, Intel Corporation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (c) 2018, Google Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * This program is free software; you can redistribute it and/or modify it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * under the terms and conditions of the GNU General Public License,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * version 2, as published by the Free Software Foundation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * This program is distributed in the hope it will be useful, but WITHOUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * You should have received a copy of the GNU General Public License along with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * Place - Suite 330, Boston, MA 02111-1307 USA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * Derived from:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * This implementation is herby placed in the public domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * The authors offers no warranty. Use at your own risk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * Last modified: 17 APR 08, 1700 PDT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include <linux/crypto.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #include <linux/scatterlist.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #include <asm/byteorder.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #include <crypto/scatterwalk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #include <crypto/internal/cipher.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #include <crypto/internal/hash.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * User definable settings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #define VMAC_TAG_LEN 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #define VMAC_KEY_LEN (VMAC_KEY_SIZE/8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define VMAC_NONCEBYTES 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) /* per-transform (per-key) context */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) struct vmac_tfm_ctx {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) struct crypto_cipher *cipher;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) u64 polykey[2*VMAC_TAG_LEN/64];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) u64 l3key[2*VMAC_TAG_LEN/64];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) /* per-request context */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) struct vmac_desc_ctx {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) union {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) u8 partial[VMAC_NHBYTES]; /* partial block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) __le64 partial_words[VMAC_NHBYTES / 8];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) unsigned int partial_size; /* size of the partial block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) bool first_block_processed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) union {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) u8 bytes[VMAC_NONCEBYTES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) __be64 pads[VMAC_NONCEBYTES / 8];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) } nonce;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) unsigned int nonce_size; /* nonce bytes filled so far */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * Constants and masks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #define UINT64_C(x) x##ULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) #define pe64_to_cpup le64_to_cpup /* Prefer little endian */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) #ifdef __LITTLE_ENDIAN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) #define INDEX_HIGH 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) #define INDEX_LOW 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) #define INDEX_HIGH 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) #define INDEX_LOW 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) * The following routines are used in this implementation. They are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) * written via macros to simulate zero-overhead call-by-reference.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * MUL64: 64x64->128-bit multiplication
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * PMUL64: assumes top bits cleared on inputs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) * ADD128: 128x128->128-bit addition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) #define ADD128(rh, rl, ih, il) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) u64 _il = (il); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) (rl) += (_il); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) if ((rl) < (_il)) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) (rh)++; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) (rh) += (ih); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) u64 _i1 = (i1), _i2 = (i2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) rh = MUL32(_i1>>32, _i2>>32); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) rl = MUL32(_i1, _i2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) ADD128(rh, rl, (m >> 32), (m << 32)); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) #define MUL64(rh, rl, i1, i2) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) u64 _i1 = (i1), _i2 = (i2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) u64 m1 = MUL32(_i1, _i2>>32); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) u64 m2 = MUL32(_i1>>32, _i2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) rh = MUL32(_i1>>32, _i2>>32); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) rl = MUL32(_i1, _i2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) * For highest performance the L1 NH and L2 polynomial hashes should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) * carefully implemented to take advantage of one's target architecture.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) * Here these two hash functions are defined multiple time; once for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) * 64-bit architectures, once for 32-bit SSE2 architectures, and once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) * for the rest (32-bit) architectures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) * Optionally, nh_vmac_nhbytes can be defined (for multiples of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) * NH computations at once).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) #ifdef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) #define nh_16(mp, kp, nw, rh, rl) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) int i; u64 th, tl; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) rh = rl = 0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) for (i = 0; i < nw; i += 2) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) int i; u64 th, tl; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) rh1 = rl1 = rh = rl = 0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) for (i = 0; i < nw; i += 2) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) ADD128(rh1, rl1, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) int i; u64 th, tl; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) rh = rl = 0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) for (i = 0; i < nw; i += 8) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) int i; u64 th, tl; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) rh1 = rl1 = rh = rl = 0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) for (i = 0; i < nw; i += 8) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) ADD128(rh1, rl1, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) ADD128(rh1, rl1, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) ADD128(rh1, rl1, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) ADD128(rh, rl, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) ADD128(rh1, rl1, th, tl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) #define poly_step(ah, al, kh, kl, mh, ml) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) /* compute ab*cd, put bd into result registers */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) PMUL64(t3h, t3l, al, kh); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) PMUL64(t2h, t2l, ah, kl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) PMUL64(t1h, t1l, ah, 2*kh); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) PMUL64(ah, al, al, kl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) /* add 2 * ac to result */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) ADD128(ah, al, t1h, t1l); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) /* add together ad + bc */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) ADD128(t2h, t2l, t3h, t3l); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) /* now (ah,al), (t2l,2*t2h) need summing */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) /* first add the high registers, carrying into t2h */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) ADD128(t2h, ah, z, t2l); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) /* double t2h and add top bit of ah */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) t2h = 2 * t2h + (ah >> 63); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) ah &= m63; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) /* now add the low registers */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) ADD128(ah, al, mh, ml); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) ADD128(ah, al, z, t2h); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) #else /* ! CONFIG_64BIT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) #ifndef nh_16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) #define nh_16(mp, kp, nw, rh, rl) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) u64 t1, t2, m1, m2, t; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) int i; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) rh = rl = t = 0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) for (i = 0; i < nw; i += 2) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) t1 = pe64_to_cpup(mp+i) + kp[i]; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) m2 = MUL32(t1 >> 32, t2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) m1 = MUL32(t1, t2 >> 32); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) MUL32(t1, t2)); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) rh += (u64)(u32)(m1 >> 32) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) + (u32)(m2 >> 32); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) t += (u64)(u32)m1 + (u32)m2; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) ADD128(rh, rl, (t >> 32), (t << 32)); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) static void poly_step_func(u64 *ahi, u64 *alo,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) const u64 *kh, const u64 *kl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) const u64 *mh, const u64 *ml)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) #define a0 (*(((u32 *)alo)+INDEX_LOW))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) #define a1 (*(((u32 *)alo)+INDEX_HIGH))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) #define a2 (*(((u32 *)ahi)+INDEX_LOW))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) #define k0 (*(((u32 *)kl)+INDEX_LOW))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) #define k1 (*(((u32 *)kl)+INDEX_HIGH))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) #define k2 (*(((u32 *)kh)+INDEX_LOW))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) #define k3 (*(((u32 *)kh)+INDEX_HIGH))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) u64 p, q, t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) u32 t2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) p = MUL32(a3, k3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) p += p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) p += *(u64 *)mh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) p += MUL32(a0, k2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) p += MUL32(a1, k1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) p += MUL32(a2, k0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) t = (u32)(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) p >>= 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) p += MUL32(a0, k3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) p += MUL32(a1, k2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) p += MUL32(a2, k1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) p += MUL32(a3, k0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) t |= ((u64)((u32)p & 0x7fffffff)) << 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) p >>= 31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) p += (u64)(((u32 *)ml)[INDEX_LOW]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) p += MUL32(a0, k0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) q = MUL32(a1, k3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) q += MUL32(a2, k2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) q += MUL32(a3, k1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) q += q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) p += q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) t2 = (u32)(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) p >>= 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) p += (u64)(((u32 *)ml)[INDEX_HIGH]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) p += MUL32(a0, k1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) p += MUL32(a1, k0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) q = MUL32(a2, k3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) q += MUL32(a3, k2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) q += q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) p += q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) *(u64 *)(alo) = (p << 32) | t2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) p >>= 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) *(u64 *)(ahi) = p + t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) #undef a0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) #undef a1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) #undef a2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) #undef a3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) #undef k0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) #undef k1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) #undef k2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) #undef k3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) #define poly_step(ah, al, kh, kl, mh, ml) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) #endif /* end of specialized NH and poly definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) /* At least nh_16 is defined. Defined others as needed here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) #ifndef nh_16_2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) nh_16(mp, kp, nw, rh, rl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) nh_16(mp, ((kp)+2), nw, rh2, rl2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) #ifndef nh_vmac_nhbytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) nh_16(mp, kp, nw, rh, rl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) #ifndef nh_vmac_nhbytes_2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) u64 rh, rl, t, z = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) /* fully reduce (p1,p2)+(len,0) mod p127 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) t = p1 >> 63;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) p1 &= m63;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) ADD128(p1, p2, len, t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) /* At this point, (p1,p2) is at most 2^127+(len<<64) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) ADD128(p1, p2, z, t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) p1 &= m63;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) t = p1 + (p2 >> 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) t += (t >> 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) t += (u32)t > 0xfffffffeu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) p1 += (t >> 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) p2 += (p1 << 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) /* compute (p1+k1)%p64 and (p2+k2)%p64 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) p1 += k1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) p1 += (0 - (p1 < k1)) & 257;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) p2 += k2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) p2 += (0 - (p2 < k2)) & 257;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) /* compute (p1+k1)*(p2+k2)%p64 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) MUL64(rh, rl, p1, p2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) t = rh >> 56;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) ADD128(t, rl, z, rh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) rh <<= 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) ADD128(t, rl, z, rh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) t += t << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) rl += t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) rl += (0 - (rl < t)) & 257;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) rl += (0 - (rl > p64-1)) & 257;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) return rl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) /* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) struct vmac_desc_ctx *dctx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) const __le64 *mptr, unsigned int blocks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) const u64 *kptr = tctx->nhkey;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) const u64 pkh = tctx->polykey[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) const u64 pkl = tctx->polykey[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) u64 ch = dctx->polytmp[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) u64 cl = dctx->polytmp[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) u64 rh, rl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) if (!dctx->first_block_processed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) dctx->first_block_processed = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) rh &= m62;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) ADD128(ch, cl, rh, rl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) mptr += (VMAC_NHBYTES/sizeof(u64));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) blocks--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) while (blocks--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) rh &= m62;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) poly_step(ch, cl, pkh, pkl, rh, rl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) mptr += (VMAC_NHBYTES/sizeof(u64));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) dctx->polytmp[0] = ch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) dctx->polytmp[1] = cl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) static int vmac_setkey(struct crypto_shash *tfm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) const u8 *key, unsigned int keylen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) __be64 out[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) u8 in[16] = { 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) if (keylen != VMAC_KEY_LEN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) err = crypto_cipher_setkey(tctx->cipher, key, keylen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) /* Fill nh key */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) in[0] = 0x80;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) tctx->nhkey[i] = be64_to_cpu(out[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) tctx->nhkey[i+1] = be64_to_cpu(out[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) in[15]++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) /* Fill poly key */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) in[0] = 0xC0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) in[15] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) in[15]++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) /* Fill ip key */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) in[0] = 0xE0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) in[15] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) tctx->l3key[i] = be64_to_cpu(out[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) tctx->l3key[i+1] = be64_to_cpu(out[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) in[15]++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) static int vmac_init(struct shash_desc *desc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) dctx->partial_size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) dctx->first_block_processed = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) dctx->nonce_size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) unsigned int n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) /* Nonce is passed as first VMAC_NONCEBYTES bytes of data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) if (dctx->nonce_size < VMAC_NONCEBYTES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) n = min(len, VMAC_NONCEBYTES - dctx->nonce_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) dctx->nonce_size += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) len -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) if (dctx->partial_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) n = min(len, VMAC_NHBYTES - dctx->partial_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) memcpy(&dctx->partial[dctx->partial_size], p, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) dctx->partial_size += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) len -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) if (dctx->partial_size == VMAC_NHBYTES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) vhash_blocks(tctx, dctx, dctx->partial_words, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) dctx->partial_size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) if (len >= VMAC_NHBYTES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) n = round_down(len, VMAC_NHBYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) /* TODO: 'p' may be misaligned here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) len -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) if (len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) memcpy(dctx->partial, p, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) dctx->partial_size = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) struct vmac_desc_ctx *dctx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) unsigned int partial = dctx->partial_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) u64 ch = dctx->polytmp[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) u64 cl = dctx->polytmp[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) /* L1 and L2-hash the final block if needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) if (partial) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) /* Zero-pad to next 128-bit boundary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) unsigned int n = round_up(partial, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) u64 rh, rl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) memset(&dctx->partial[partial], 0, n - partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) rh &= m62;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) if (dctx->first_block_processed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) rh, rl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) ADD128(ch, cl, rh, rl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) /* L3-hash the 128-bit output of L2-hash */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) static int vmac_final(struct shash_desc *desc, u8 *out)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) u64 hash, pad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) if (dctx->nonce_size != VMAC_NONCEBYTES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) * The VMAC specification requires a nonce at least 1 bit shorter than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) * the block cipher's block length, so we actually only accept a 127-bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) * nonce. We define the unused bit to be the first one and require that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) * it be 0, so the needed prepending of a 0 bit is implicit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) if (dctx->nonce.bytes[0] & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) /* Finish calculating the VHASH of the message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) hash = vhash_final(tctx, dctx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) /* Generate pseudorandom pad by encrypting the nonce */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) dctx->nonce.bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) pad = be64_to_cpu(dctx->nonce.pads[index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) /* The VMAC is the sum of VHASH and the pseudorandom pad */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) put_unaligned_be64(hash + pad, out);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) static int vmac_init_tfm(struct crypto_tfm *tfm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) struct crypto_cipher *cipher;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) cipher = crypto_spawn_cipher(spawn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) if (IS_ERR(cipher))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) return PTR_ERR(cipher);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) tctx->cipher = cipher;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) static void vmac_exit_tfm(struct crypto_tfm *tfm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) crypto_free_cipher(tctx->cipher);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) struct shash_instance *inst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) struct crypto_cipher_spawn *spawn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) struct crypto_alg *alg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) if (!inst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) spawn = shash_instance_ctx(inst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) crypto_attr_alg_name(tb[1]), 0, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) goto err_free_inst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) alg = crypto_spawn_cipher_alg(spawn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) err = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) if (alg->cra_blocksize != VMAC_NONCEBYTES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) goto err_free_inst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) goto err_free_inst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) inst->alg.base.cra_priority = alg->cra_priority;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) inst->alg.base.cra_blocksize = alg->cra_blocksize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) inst->alg.base.cra_alignmask = alg->cra_alignmask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) inst->alg.base.cra_init = vmac_init_tfm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) inst->alg.base.cra_exit = vmac_exit_tfm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) inst->alg.descsize = sizeof(struct vmac_desc_ctx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) inst->alg.digestsize = VMAC_TAG_LEN / 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) inst->alg.init = vmac_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) inst->alg.update = vmac_update;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) inst->alg.final = vmac_final;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) inst->alg.setkey = vmac_setkey;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) inst->free = shash_free_singlespawn_instance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) err = shash_register_instance(tmpl, inst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) err_free_inst:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) shash_free_singlespawn_instance(inst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) static struct crypto_template vmac64_tmpl = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) .name = "vmac64",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) .create = vmac_create,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) .module = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) static int __init vmac_module_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) return crypto_register_template(&vmac64_tmpl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) static void __exit vmac_module_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) crypto_unregister_template(&vmac64_tmpl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) subsys_initcall(vmac_module_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) module_exit(vmac_module_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) MODULE_DESCRIPTION("VMAC hash algorithm");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) MODULE_ALIAS_CRYPTO("vmac64");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) MODULE_IMPORT_NS(CRYPTO_INTERNAL);