Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /* 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Cryptographic API.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * TEA, XTEA, and XETA crypto alogrithms
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * The TEA and Xtended TEA algorithms were developed by David Wheeler 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * and Roger Needham at the Computer Laboratory of Cambridge University.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Due to the order of evaluation in XTEA many people have incorrectly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * implemented it.  XETA (XTEA in the wrong order), exists for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * compatibility with these implementations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <asm/byteorder.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/crypto.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define TEA_KEY_SIZE		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define TEA_BLOCK_SIZE		8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define TEA_ROUNDS		32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define TEA_DELTA		0x9e3779b9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define XTEA_KEY_SIZE		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define XTEA_BLOCK_SIZE		8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define XTEA_ROUNDS		32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define XTEA_DELTA		0x9e3779b9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) struct tea_ctx {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	u32 KEY[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) struct xtea_ctx {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	u32 KEY[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 		      unsigned int key_len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	const __le32 *key = (const __le32 *)in_key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	ctx->KEY[0] = le32_to_cpu(key[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	ctx->KEY[1] = le32_to_cpu(key[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	ctx->KEY[2] = le32_to_cpu(key[2]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	ctx->KEY[3] = le32_to_cpu(key[3]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	return 0; 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	u32 y, z, n, sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	u32 k0, k1, k2, k3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	const __le32 *in = (const __le32 *)src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	__le32 *out = (__le32 *)dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	y = le32_to_cpu(in[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	z = le32_to_cpu(in[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	k0 = ctx->KEY[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	k1 = ctx->KEY[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	k2 = ctx->KEY[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	k3 = ctx->KEY[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	n = TEA_ROUNDS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	while (n-- > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 		sum += TEA_DELTA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 		y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 		z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	out[0] = cpu_to_le32(y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	out[1] = cpu_to_le32(z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	u32 y, z, n, sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	u32 k0, k1, k2, k3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	const __le32 *in = (const __le32 *)src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	__le32 *out = (__le32 *)dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	y = le32_to_cpu(in[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	z = le32_to_cpu(in[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	k0 = ctx->KEY[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	k1 = ctx->KEY[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	k2 = ctx->KEY[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	k3 = ctx->KEY[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	sum = TEA_DELTA << 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	n = TEA_ROUNDS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	while (n-- > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		sum -= TEA_DELTA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	out[0] = cpu_to_le32(y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	out[1] = cpu_to_le32(z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		       unsigned int key_len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	const __le32 *key = (const __le32 *)in_key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	ctx->KEY[0] = le32_to_cpu(key[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	ctx->KEY[1] = le32_to_cpu(key[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	ctx->KEY[2] = le32_to_cpu(key[2]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	ctx->KEY[3] = le32_to_cpu(key[3]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	return 0; 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	u32 y, z, sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	const __le32 *in = (const __le32 *)src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	__le32 *out = (__le32 *)dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	y = le32_to_cpu(in[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	z = le32_to_cpu(in[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	while (sum != limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 		sum += XTEA_DELTA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	out[0] = cpu_to_le32(y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	out[1] = cpu_to_le32(z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	u32 y, z, sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	const __le32 *in = (const __le32 *)src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	__le32 *out = (__le32 *)dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	y = le32_to_cpu(in[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	z = le32_to_cpu(in[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	sum = XTEA_DELTA * XTEA_ROUNDS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	while (sum) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		sum -= XTEA_DELTA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 		y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	out[0] = cpu_to_le32(y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	out[1] = cpu_to_le32(z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	u32 y, z, sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	const __le32 *in = (const __le32 *)src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	__le32 *out = (__le32 *)dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	y = le32_to_cpu(in[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	z = le32_to_cpu(in[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	while (sum != limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 		y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		sum += XTEA_DELTA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 		z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	out[0] = cpu_to_le32(y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	out[1] = cpu_to_le32(z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	u32 y, z, sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	const __le32 *in = (const __le32 *)src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	__le32 *out = (__le32 *)dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	y = le32_to_cpu(in[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	z = le32_to_cpu(in[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	sum = XTEA_DELTA * XTEA_ROUNDS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	while (sum) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		sum -= XTEA_DELTA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	out[0] = cpu_to_le32(y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	out[1] = cpu_to_le32(z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) static struct crypto_alg tea_algs[3] = { {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	.cra_name		=	"tea",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	.cra_driver_name	=	"tea-generic",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	.cra_blocksize		=	TEA_BLOCK_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	.cra_ctxsize		=	sizeof (struct tea_ctx),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	.cra_alignmask		=	3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	.cra_module		=	THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	.cra_u			=	{ .cipher = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	.cia_min_keysize	=	TEA_KEY_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	.cia_max_keysize	=	TEA_KEY_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	.cia_setkey		= 	tea_setkey,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	.cia_encrypt		=	tea_encrypt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	.cia_decrypt		=	tea_decrypt } }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	.cra_name		=	"xtea",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	.cra_driver_name	=	"xtea-generic",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	.cra_blocksize		=	XTEA_BLOCK_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	.cra_ctxsize		=	sizeof (struct xtea_ctx),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	.cra_alignmask		=	3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	.cra_module		=	THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	.cra_u			=	{ .cipher = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	.cia_min_keysize	=	XTEA_KEY_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	.cia_max_keysize	=	XTEA_KEY_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	.cia_setkey		= 	xtea_setkey,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	.cia_encrypt		=	xtea_encrypt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	.cia_decrypt		=	xtea_decrypt } }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	.cra_name		=	"xeta",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	.cra_driver_name	=	"xeta-generic",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	.cra_blocksize		=	XTEA_BLOCK_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	.cra_ctxsize		=	sizeof (struct xtea_ctx),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	.cra_alignmask		=	3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	.cra_module		=	THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	.cra_u			=	{ .cipher = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	.cia_min_keysize	=	XTEA_KEY_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	.cia_max_keysize	=	XTEA_KEY_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	.cia_setkey		= 	xtea_setkey,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	.cia_encrypt		=	xeta_encrypt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	.cia_decrypt		=	xeta_decrypt } }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) } };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) static int __init tea_mod_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	return crypto_register_algs(tea_algs, ARRAY_SIZE(tea_algs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) static void __exit tea_mod_fini(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	crypto_unregister_algs(tea_algs, ARRAY_SIZE(tea_algs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) MODULE_ALIAS_CRYPTO("tea");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) MODULE_ALIAS_CRYPTO("xtea");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) MODULE_ALIAS_CRYPTO("xeta");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) subsys_initcall(tea_mod_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) module_exit(tea_mod_fini);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");