^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * IO cost model based controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (C) 2019 Andy Newell <newella@fb.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (C) 2019 Facebook
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * One challenge of controlling IO resources is the lack of trivially
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * observable cost metric. This is distinguished from CPU and memory where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * wallclock time and the number of bytes can serve as accurate enough
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * approximations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * Bandwidth and iops are the most commonly used metrics for IO devices but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * depending on the type and specifics of the device, different IO patterns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * easily lead to multiple orders of magnitude variations rendering them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * useless for the purpose of IO capacity distribution. While on-device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * time, with a lot of clutches, could serve as a useful approximation for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * non-queued rotational devices, this is no longer viable with modern
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * devices, even the rotational ones.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * While there is no cost metric we can trivially observe, it isn't a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * complete mystery. For example, on a rotational device, seek cost
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * dominates while a contiguous transfer contributes a smaller amount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * proportional to the size. If we can characterize at least the relative
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * costs of these different types of IOs, it should be possible to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * implement a reasonable work-conserving proportional IO resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * distribution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * 1. IO Cost Model
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * IO cost model estimates the cost of an IO given its basic parameters and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * history (e.g. the end sector of the last IO). The cost is measured in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * device time. If a given IO is estimated to cost 10ms, the device should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * be able to process ~100 of those IOs in a second.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * Currently, there's only one builtin cost model - linear. Each IO is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) * classified as sequential or random and given a base cost accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * On top of that, a size cost proportional to the length of the IO is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * added. While simple, this model captures the operational
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * characteristics of a wide varienty of devices well enough. Default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * paramters for several different classes of devices are provided and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * parameters can be configured from userspace via
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * /sys/fs/cgroup/io.cost.model.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * device-specific coefficients.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * 2. Control Strategy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) * The device virtual time (vtime) is used as the primary control metric.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) * The control strategy is composed of the following three parts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) * 2-1. Vtime Distribution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) * When a cgroup becomes active in terms of IOs, its hierarchical share is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) * calculated. Please consider the following hierarchy where the numbers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) * inside parentheses denote the configured weights.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) * root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) * / \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * A (w:100) B (w:300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * / \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * A0 (w:100) A1 (w:100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * of equal weight, each gets 50% share. If then B starts issuing IOs, B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) * 12.5% each. The distribution mechanism only cares about these flattened
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) * shares. They're called hweights (hierarchical weights) and always add
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) * upto 1 (WEIGHT_ONE).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) * A given cgroup's vtime runs slower in inverse proportion to its hweight.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) * against the device vtime - an IO which takes 10ms on the underlying
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * device is considered to take 80ms on A0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) * This constitutes the basis of IO capacity distribution. Each cgroup's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) * vtime is running at a rate determined by its hweight. A cgroup tracks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * the vtime consumed by past IOs and can issue a new IO iff doing so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) * wouldn't outrun the current device vtime. Otherwise, the IO is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) * suspended until the vtime has progressed enough to cover it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) * 2-2. Vrate Adjustment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) * It's unrealistic to expect the cost model to be perfect. There are too
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) * many devices and even on the same device the overall performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) * fluctuates depending on numerous factors such as IO mixture and device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) * internal garbage collection. The controller needs to adapt dynamically.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) * This is achieved by adjusting the overall IO rate according to how busy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) * the device is. If the device becomes overloaded, we're sending down too
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) * many IOs and should generally slow down. If there are waiting issuers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) * but the device isn't saturated, we're issuing too few and should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * generally speed up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) * To slow down, we lower the vrate - the rate at which the device vtime
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) * passes compared to the wall clock. For example, if the vtime is running
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * at the vrate of 75%, all cgroups added up would only be able to issue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * 750ms worth of IOs per second, and vice-versa for speeding up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) * Device business is determined using two criteria - rq wait and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) * completion latencies.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) * When a device gets saturated, the on-device and then the request queues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) * fill up and a bio which is ready to be issued has to wait for a request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) * to become available. When this delay becomes noticeable, it's a clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) * indication that the device is saturated and we lower the vrate. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) * saturation signal is fairly conservative as it only triggers when both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) * hardware and software queues are filled up, and is used as the default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) * busy signal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) * As devices can have deep queues and be unfair in how the queued commands
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) * are executed, soley depending on rq wait may not result in satisfactory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * control quality. For a better control quality, completion latency QoS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * parameters can be configured so that the device is considered saturated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) * if N'th percentile completion latency rises above the set point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) * The completion latency requirements are a function of both the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * underlying device characteristics and the desired IO latency quality of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) * service. There is an inherent trade-off - the tighter the latency QoS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) * the higher the bandwidth lossage. Latency QoS is disabled by default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) * and can be set through /sys/fs/cgroup/io.cost.qos.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) * 2-3. Work Conservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) * Imagine two cgroups A and B with equal weights. A is issuing a small IO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) * periodically while B is sending out enough parallel IOs to saturate the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) * device on its own. Let's say A's usage amounts to 100ms worth of IO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) * cost per second, i.e., 10% of the device capacity. The naive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) * distribution of half and half would lead to 60% utilization of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) * device, a significant reduction in the total amount of work done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) * compared to free-for-all competition. This is too high a cost to pay
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) * for IO control.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) * To conserve the total amount of work done, we keep track of how much
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) * each active cgroup is actually using and yield part of its weight if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) * there are other cgroups which can make use of it. In the above case,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) * A's weight will be lowered so that it hovers above the actual usage and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) * B would be able to use the rest.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) * As we don't want to penalize a cgroup for donating its weight, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) * surplus weight adjustment factors in a margin and has an immediate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) * snapback mechanism in case the cgroup needs more IO vtime for itself.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) * Note that adjusting down surplus weights has the same effects as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) * accelerating vtime for other cgroups and work conservation can also be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) * implemented by adjusting vrate dynamically. However, squaring who can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) * donate and should take back how much requires hweight propagations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) * anyway making it easier to implement and understand as a separate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) * mechanism.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * 3. Monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) * Instead of debugfs or other clumsy monitoring mechanisms, this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) * controller uses a drgn based monitoring script -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) * tools/cgroup/iocost_monitor.py. For details on drgn, please see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) * https://github.com/osandov/drgn. The ouput looks like the following.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) * active weight hweight% inflt% dbt delay usages%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) * - per : Timer period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) * - cur_per : Internal wall and device vtime clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) * - vrate : Device virtual time rate against wall clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) * - weight : Surplus-adjusted and configured weights
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) * - hweight : Surplus-adjusted and configured hierarchical weights
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) * - inflt : The percentage of in-flight IO cost at the end of last period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) * - del_ms : Deferred issuer delay induction level and duration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) * - usages : Usage history
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) #include <linux/timer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) #include <linux/time64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) #include <linux/parser.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) #include <linux/blk-cgroup.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) #include <asm/local.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) #include <asm/local64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) #include "blk-rq-qos.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) #include "blk-stat.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) #include "blk-wbt.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) #ifdef CONFIG_TRACEPOINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) #define TRACE_IOCG_PATH_LEN 1024
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) static DEFINE_SPINLOCK(trace_iocg_path_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) #define TRACE_IOCG_PATH(type, iocg, ...) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) unsigned long flags; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) if (trace_iocost_##type##_enabled()) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) spin_lock_irqsave(&trace_iocg_path_lock, flags); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) trace_iocg_path, TRACE_IOCG_PATH_LEN); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) trace_iocost_##type(iocg, trace_iocg_path, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) ##__VA_ARGS__); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) #else /* CONFIG_TRACE_POINTS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) #endif /* CONFIG_TRACE_POINTS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) MILLION = 1000000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) /* timer period is calculated from latency requirements, bound it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) MIN_PERIOD = USEC_PER_MSEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) MAX_PERIOD = USEC_PER_SEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) * iocg->vtime is targeted at 50% behind the device vtime, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) * serves as its IO credit buffer. Surplus weight adjustment is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) * immediately canceled if the vtime margin runs below 10%.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) MARGIN_MIN_PCT = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) MARGIN_LOW_PCT = 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) MARGIN_TARGET_PCT = 50,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) INUSE_ADJ_STEP_PCT = 25,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) /* Have some play in timer operations */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) TIMER_SLACK_PCT = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) /* 1/64k is granular enough and can easily be handled w/ u32 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) WEIGHT_ONE = 1 << 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) * As vtime is used to calculate the cost of each IO, it needs to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) * be fairly high precision. For example, it should be able to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) * represent the cost of a single page worth of discard with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) * suffificient accuracy. At the same time, it should be able to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) * represent reasonably long enough durations to be useful and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) * convenient during operation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) * granularity and days of wrap-around time even at extreme vrates.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) VTIME_PER_SEC_SHIFT = 37,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) /* bound vrate adjustments within two orders of magnitude */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) VRATE_MIN_PPM = 10000, /* 1% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) VRATE_MAX_PPM = 100000000, /* 10000% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) VRATE_CLAMP_ADJ_PCT = 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) /* if IOs end up waiting for requests, issue less */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) RQ_WAIT_BUSY_PCT = 5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) /* unbusy hysterisis */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) UNBUSY_THR_PCT = 75,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) * The effect of delay is indirect and non-linear and a huge amount of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) * future debt can accumulate abruptly while unthrottled. Linearly scale
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) * up delay as debt is going up and then let it decay exponentially.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) * This gives us quick ramp ups while delay is accumulating and long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) * tails which can help reducing the frequency of debt explosions on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) * unthrottle. The parameters are experimentally determined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) * The delay mechanism provides adequate protection and behavior in many
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) * cases. However, this is far from ideal and falls shorts on both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) * fronts. The debtors are often throttled too harshly costing a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) * significant level of fairness and possibly total work while the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) * protection against their impacts on the system can be choppy and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) * unreliable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) * The shortcoming primarily stems from the fact that, unlike for page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) * cache, the kernel doesn't have well-defined back-pressure propagation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) * mechanism and policies for anonymous memory. Fully addressing this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) * issue will likely require substantial improvements in the area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) MIN_DELAY_THR_PCT = 500,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) MAX_DELAY_THR_PCT = 25000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) MIN_DELAY = 250,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) MAX_DELAY = 250 * USEC_PER_MSEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) /* halve debts if avg usage over 100ms is under 50% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) DFGV_USAGE_PCT = 50,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) DFGV_PERIOD = 100 * USEC_PER_MSEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) /* don't let cmds which take a very long time pin lagging for too long */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) MAX_LAGGING_PERIODS = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) /* switch iff the conditions are met for longer than this */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) * Count IO size in 4k pages. The 12bit shift helps keeping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) * size-proportional components of cost calculation in closer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) * numbers of digits to per-IO cost components.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) IOC_PAGE_SHIFT = 12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) /* if apart further than 16M, consider randio for linear model */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) LCOEF_RANDIO_PAGES = 4096,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) enum ioc_running {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) IOC_IDLE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) IOC_RUNNING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) IOC_STOP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) /* io.cost.qos controls including per-dev enable of the whole controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) QOS_ENABLE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) QOS_CTRL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) NR_QOS_CTRL_PARAMS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) /* io.cost.qos params */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) QOS_RPPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) QOS_RLAT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) QOS_WPPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) QOS_WLAT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) QOS_MIN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) QOS_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) NR_QOS_PARAMS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) /* io.cost.model controls */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) COST_CTRL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) COST_MODEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) NR_COST_CTRL_PARAMS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) /* builtin linear cost model coefficients */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) I_LCOEF_RBPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) I_LCOEF_RSEQIOPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) I_LCOEF_RRANDIOPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) I_LCOEF_WBPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) I_LCOEF_WSEQIOPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) I_LCOEF_WRANDIOPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) NR_I_LCOEFS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) LCOEF_RPAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) LCOEF_RSEQIO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) LCOEF_RRANDIO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) LCOEF_WPAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) LCOEF_WSEQIO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) LCOEF_WRANDIO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) NR_LCOEFS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) AUTOP_INVALID,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) AUTOP_HDD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) AUTOP_SSD_QD1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) AUTOP_SSD_DFL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) AUTOP_SSD_FAST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) struct ioc_gq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) struct ioc_params {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) u32 qos[NR_QOS_PARAMS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) u64 i_lcoefs[NR_I_LCOEFS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) u64 lcoefs[NR_LCOEFS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) u32 too_fast_vrate_pct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) u32 too_slow_vrate_pct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) struct ioc_margins {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) s64 min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) s64 low;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) s64 target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) struct ioc_missed {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) local_t nr_met;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) local_t nr_missed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) u32 last_met;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) u32 last_missed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) struct ioc_pcpu_stat {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) struct ioc_missed missed[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) local64_t rq_wait_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) u64 last_rq_wait_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) /* per device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) struct ioc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) struct rq_qos rqos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) bool enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) struct ioc_params params;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) struct ioc_margins margins;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) u32 period_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) u32 timer_slack_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) u64 vrate_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) u64 vrate_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) struct timer_list timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) struct list_head active_iocgs; /* active cgroups */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) struct ioc_pcpu_stat __percpu *pcpu_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) enum ioc_running running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) atomic64_t vtime_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) u64 vtime_base_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) s64 vtime_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) seqcount_spinlock_t period_seqcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) u64 period_at; /* wallclock starttime */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) u64 period_at_vtime; /* vtime starttime */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) atomic64_t cur_period; /* inc'd each period */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) int busy_level; /* saturation history */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) bool weights_updated;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) atomic_t hweight_gen; /* for lazy hweights */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) /* debt forgivness */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) u64 dfgv_period_at;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) u64 dfgv_period_rem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) u64 dfgv_usage_us_sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) u64 autop_too_fast_at;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) u64 autop_too_slow_at;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) int autop_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) bool user_qos_params:1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) bool user_cost_model:1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) struct iocg_pcpu_stat {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) local64_t abs_vusage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) struct iocg_stat {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) u64 usage_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) u64 wait_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) u64 indebt_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) u64 indelay_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) /* per device-cgroup pair */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) struct ioc_gq {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) struct blkg_policy_data pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) struct ioc *ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) * A iocg can get its weight from two sources - an explicit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) * per-device-cgroup configuration or the default weight of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) * cgroup. `cfg_weight` is the explicit per-device-cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) * configuration. `weight` is the effective considering both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) * sources.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) * When an idle cgroup becomes active its `active` goes from 0 to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) * `weight`. `inuse` is the surplus adjusted active weight.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) * `active` and `inuse` are used to calculate `hweight_active` and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) * `hweight_inuse`.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) * `last_inuse` remembers `inuse` while an iocg is idle to persist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) * surplus adjustments.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) * `inuse` may be adjusted dynamically during period. `saved_*` are used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) * to determine and track adjustments.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) u32 cfg_weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) u32 weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) u32 active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) u32 inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) u32 last_inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) s64 saved_margin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) sector_t cursor; /* to detect randio */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) * `vtime` is this iocg's vtime cursor which progresses as IOs are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) * issued. If lagging behind device vtime, the delta represents
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) * the currently available IO budget. If runnning ahead, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) * overage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) * `vtime_done` is the same but progressed on completion rather
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) * than issue. The delta behind `vtime` represents the cost of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) * currently in-flight IOs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) atomic64_t vtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) atomic64_t done_vtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) u64 abs_vdebt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) /* current delay in effect and when it started */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) u64 delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) u64 delay_at;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) * The period this iocg was last active in. Used for deactivation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) * and invalidating `vtime`.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) atomic64_t active_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) struct list_head active_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) /* see __propagate_weights() and current_hweight() for details */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) u64 child_active_sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) u64 child_inuse_sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) u64 child_adjusted_sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) int hweight_gen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) u32 hweight_active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) u32 hweight_inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) u32 hweight_donating;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) u32 hweight_after_donation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) struct list_head walk_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) struct list_head surplus_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) struct wait_queue_head waitq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) struct hrtimer waitq_timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) /* timestamp at the latest activation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) u64 activated_at;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) /* statistics */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) struct iocg_pcpu_stat __percpu *pcpu_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) struct iocg_stat local_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) struct iocg_stat desc_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) struct iocg_stat last_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) u64 last_stat_abs_vusage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) u64 usage_delta_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) u64 wait_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) u64 indebt_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) u64 indelay_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) /* this iocg's depth in the hierarchy and ancestors including self */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) int level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) struct ioc_gq *ancestors[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) /* per cgroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) struct ioc_cgrp {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) struct blkcg_policy_data cpd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) unsigned int dfl_weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) struct ioc_now {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) u64 now_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) u64 now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) u64 vnow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) u64 vrate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) struct iocg_wait {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) struct wait_queue_entry wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) struct bio *bio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) u64 abs_cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) bool committed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) struct iocg_wake_ctx {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) struct ioc_gq *iocg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) u32 hw_inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) s64 vbudget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) static const struct ioc_params autop[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) [AUTOP_HDD] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) .qos = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) [QOS_RLAT] = 250000, /* 250ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) [QOS_WLAT] = 250000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) [QOS_MIN] = VRATE_MIN_PPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) [QOS_MAX] = VRATE_MAX_PPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) .i_lcoefs = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) [I_LCOEF_RBPS] = 174019176,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) [I_LCOEF_RSEQIOPS] = 41708,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) [I_LCOEF_RRANDIOPS] = 370,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) [I_LCOEF_WBPS] = 178075866,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) [I_LCOEF_WSEQIOPS] = 42705,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) [I_LCOEF_WRANDIOPS] = 378,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) [AUTOP_SSD_QD1] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) .qos = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) [QOS_RLAT] = 25000, /* 25ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) [QOS_WLAT] = 25000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) [QOS_MIN] = VRATE_MIN_PPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) [QOS_MAX] = VRATE_MAX_PPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) .i_lcoefs = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) [I_LCOEF_RBPS] = 245855193,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) [I_LCOEF_RSEQIOPS] = 61575,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) [I_LCOEF_RRANDIOPS] = 6946,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) [I_LCOEF_WBPS] = 141365009,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) [I_LCOEF_WSEQIOPS] = 33716,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) [I_LCOEF_WRANDIOPS] = 26796,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) [AUTOP_SSD_DFL] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) .qos = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) [QOS_RLAT] = 25000, /* 25ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) [QOS_WLAT] = 25000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) [QOS_MIN] = VRATE_MIN_PPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) [QOS_MAX] = VRATE_MAX_PPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) .i_lcoefs = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) [I_LCOEF_RBPS] = 488636629,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) [I_LCOEF_RSEQIOPS] = 8932,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) [I_LCOEF_RRANDIOPS] = 8518,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) [I_LCOEF_WBPS] = 427891549,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) [I_LCOEF_WSEQIOPS] = 28755,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) [I_LCOEF_WRANDIOPS] = 21940,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) .too_fast_vrate_pct = 500,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) [AUTOP_SSD_FAST] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) .qos = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) [QOS_RLAT] = 5000, /* 5ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) [QOS_WLAT] = 5000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) [QOS_MIN] = VRATE_MIN_PPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) [QOS_MAX] = VRATE_MAX_PPM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) .i_lcoefs = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) [I_LCOEF_RBPS] = 3102524156LLU,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) [I_LCOEF_RSEQIOPS] = 724816,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) [I_LCOEF_RRANDIOPS] = 778122,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) [I_LCOEF_WBPS] = 1742780862LLU,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) [I_LCOEF_WSEQIOPS] = 425702,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) [I_LCOEF_WRANDIOPS] = 443193,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) .too_slow_vrate_pct = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) * vtime credit shortage and down on device saturation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) static u32 vrate_adj_pct[] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) { 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) static struct blkcg_policy blkcg_policy_iocost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) /* accessors and helpers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) return container_of(rqos, struct ioc, rqos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) static struct ioc *q_to_ioc(struct request_queue *q)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) static const char *q_name(struct request_queue *q)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) if (blk_queue_registered(q))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) return kobject_name(q->kobj.parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) return "<unknown>";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) static const char __maybe_unused *ioc_name(struct ioc *ioc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) return q_name(ioc->rqos.q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) return pd_to_blkg(&iocg->pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) struct ioc_cgrp, cpd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) * weight, the more expensive each IO. Must round up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) * The inverse of abs_cost_to_cost(). Must round up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) u64 abs_cost, u64 cost)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) struct iocg_pcpu_stat *gcs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) bio->bi_iocost_cost = cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) atomic64_add(cost, &iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) gcs = get_cpu_ptr(iocg->pcpu_stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) local64_add(abs_cost, &gcs->abs_vusage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) put_cpu_ptr(gcs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) if (lock_ioc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) spin_lock_irqsave(&iocg->ioc->lock, *flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) spin_lock(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) spin_lock_irqsave(&iocg->waitq.lock, *flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) if (unlock_ioc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) spin_unlock(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) #define CREATE_TRACE_POINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) #include <trace/events/iocost.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) static void ioc_refresh_margins(struct ioc *ioc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) struct ioc_margins *margins = &ioc->margins;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) u32 period_us = ioc->period_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) u64 vrate = ioc->vtime_base_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) /* latency Qos params changed, update period_us and all the dependent params */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) static void ioc_refresh_period_us(struct ioc *ioc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) u32 ppm, lat, multi, period_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) lockdep_assert_held(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) /* pick the higher latency target */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) ppm = ioc->params.qos[QOS_RPPM];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) lat = ioc->params.qos[QOS_RLAT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) ppm = ioc->params.qos[QOS_WPPM];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) lat = ioc->params.qos[QOS_WLAT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) * We want the period to be long enough to contain a healthy number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) * of IOs while short enough for granular control. Define it as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) * multiple of the latency target. Ideally, the multiplier should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) * be scaled according to the percentile so that it would nominally
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) * contain a certain number of requests. Let's be simpler and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) if (ppm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) multi = max_t(u32, (MILLION - ppm) / 50000, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) multi = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) period_us = multi * lat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) /* calculate dependent params */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) ioc->period_us = period_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) ioc->timer_slack_ns = div64_u64(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) ioc_refresh_margins(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) static int ioc_autop_idx(struct ioc *ioc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) int idx = ioc->autop_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) const struct ioc_params *p = &autop[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) u32 vrate_pct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) u64 now_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) /* rotational? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) if (!blk_queue_nonrot(ioc->rqos.q))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) return AUTOP_HDD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) /* handle SATA SSDs w/ broken NCQ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) if (blk_queue_depth(ioc->rqos.q) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) return AUTOP_SSD_QD1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) /* use one of the normal ssd sets */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) if (idx < AUTOP_SSD_DFL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) return AUTOP_SSD_DFL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) /* if user is overriding anything, maintain what was there */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) if (ioc->user_qos_params || ioc->user_cost_model)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) return idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) /* step up/down based on the vrate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) now_ns = ktime_get_ns();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) if (!ioc->autop_too_fast_at)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) ioc->autop_too_fast_at = now_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) return idx + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) ioc->autop_too_fast_at = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) if (!ioc->autop_too_slow_at)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) ioc->autop_too_slow_at = now_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) return idx - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) ioc->autop_too_slow_at = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) return idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) * Take the followings as input
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) * @bps maximum sequential throughput
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) * @seqiops maximum sequential 4k iops
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) * @randiops maximum random 4k iops
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) * and calculate the linear model cost coefficients.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) * *@page per-page cost 1s / (@bps / 4096)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) u64 *page, u64 *seqio, u64 *randio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) u64 v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) *page = *seqio = *randio = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) if (bps)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) if (seqiops) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) if (v > *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) *seqio = v - *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) if (randiops) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) if (v > *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) *randio = v - *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) static void ioc_refresh_lcoefs(struct ioc *ioc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) u64 *u = ioc->params.i_lcoefs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) u64 *c = ioc->params.lcoefs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) static bool ioc_refresh_params(struct ioc *ioc, bool force)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) const struct ioc_params *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) lockdep_assert_held(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) idx = ioc_autop_idx(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) p = &autop[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) if (idx == ioc->autop_idx && !force)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) if (idx != ioc->autop_idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) ioc->autop_idx = idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) ioc->autop_too_fast_at = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) ioc->autop_too_slow_at = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) if (!ioc->user_qos_params)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) if (!ioc->user_cost_model)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) ioc_refresh_period_us(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) ioc_refresh_lcoefs(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) VTIME_PER_USEC, MILLION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) VTIME_PER_USEC, MILLION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) * When an iocg accumulates too much vtime or gets deactivated, we throw away
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) * some vtime, which lowers the overall device utilization. As the exact amount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) * which is being thrown away is known, we can compensate by accelerating the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) * vrate accordingly so that the extra vtime generated in the current period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) * matches what got lost.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) s64 pleft = ioc->period_at + ioc->period_us - now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) s64 vcomp, vcomp_min, vcomp_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) lockdep_assert_held(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) /* we need some time left in this period */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) if (pleft <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) * Calculate how much vrate should be adjusted to offset the error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) * Limit the amount of adjustment and deduct the adjusted amount from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) * the error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) vcomp = -div64_s64(ioc->vtime_err, pleft);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) vcomp_min = -(ioc->vtime_base_rate >> 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) vcomp_max = ioc->vtime_base_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) vcomp = clamp(vcomp, vcomp_min, vcomp_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) ioc->vtime_err += vcomp * pleft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) /* bound how much error can accumulate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) /* take a snapshot of the current [v]time and vrate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) static void ioc_now(struct ioc *ioc, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) unsigned seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) now->now_ns = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) now->now = ktime_to_us(now->now_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) now->vrate = atomic64_read(&ioc->vtime_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) * The current vtime is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) * vtime at period start + (wallclock time since the start) * vrate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) * As a consistent snapshot of `period_at_vtime` and `period_at` is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) * needed, they're seqcount protected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) seq = read_seqcount_begin(&ioc->period_seqcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) now->vnow = ioc->period_at_vtime +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) (now->now - ioc->period_at) * now->vrate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) } while (read_seqcount_retry(&ioc->period_seqcount, seq));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) WARN_ON_ONCE(ioc->running != IOC_RUNNING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) write_seqcount_begin(&ioc->period_seqcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) ioc->period_at = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) ioc->period_at_vtime = now->vnow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) write_seqcount_end(&ioc->period_seqcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) add_timer(&ioc->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) * Update @iocg's `active` and `inuse` to @active and @inuse, update level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) * weight sums and propagate upwards accordingly. If @save, the current margin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) * is saved to be used as reference for later inuse in-period adjustments.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) bool save, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) int lvl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) lockdep_assert_held(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) * For an active leaf node, its inuse shouldn't be zero or exceed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) * @active. An active internal node's inuse is solely determined by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) * inuse to active ratio of its children regardless of @inuse.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) iocg->child_active_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) inuse = clamp_t(u32, inuse, 1, active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) iocg->last_inuse = iocg->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) if (save)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) if (active == iocg->active && inuse == iocg->inuse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) struct ioc_gq *parent = iocg->ancestors[lvl];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) struct ioc_gq *child = iocg->ancestors[lvl + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) u32 parent_active = 0, parent_inuse = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) /* update the level sums */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) parent->child_active_sum += (s32)(active - child->active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) parent->child_inuse_sum += (s32)(inuse - child->inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) /* apply the updates */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) child->active = active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) child->inuse = inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) * The delta between inuse and active sums indicates that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) * that much of weight is being given away. Parent's inuse
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) * and active should reflect the ratio.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) if (parent->child_active_sum) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) parent_active = parent->weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) parent_inuse = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) parent_active * parent->child_inuse_sum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) parent->child_active_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) /* do we need to keep walking up? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) if (parent_active == parent->active &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) parent_inuse == parent->inuse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) active = parent_active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) inuse = parent_inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) ioc->weights_updated = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) static void commit_weights(struct ioc *ioc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) lockdep_assert_held(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) if (ioc->weights_updated) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) /* paired with rmb in current_hweight(), see there */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) atomic_inc(&ioc->hweight_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) ioc->weights_updated = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) bool save, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) __propagate_weights(iocg, active, inuse, save, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) commit_weights(iocg->ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) int lvl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) u32 hwa, hwi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) int ioc_gen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) /* hot path - if uptodate, use cached */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) ioc_gen = atomic_read(&ioc->hweight_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) if (ioc_gen == iocg->hweight_gen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) * Paired with wmb in commit_weights(). If we saw the updated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) * hweight_gen, all the weight updates from __propagate_weights() are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) * visible too.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) * We can race with weight updates during calculation and get it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) * wrong. However, hweight_gen would have changed and a future
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) * reader will recalculate and we're guaranteed to discard the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) * wrong result soon.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) hwa = hwi = WEIGHT_ONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) struct ioc_gq *parent = iocg->ancestors[lvl];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) struct ioc_gq *child = iocg->ancestors[lvl + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) u64 active_sum = READ_ONCE(parent->child_active_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) u32 active = READ_ONCE(child->active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) u32 inuse = READ_ONCE(child->inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) /* we can race with deactivations and either may read as zero */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) if (!active_sum || !inuse_sum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) active_sum = max_t(u64, active, active_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) hwa = div64_u64((u64)hwa * active, active_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) inuse_sum = max_t(u64, inuse, inuse_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) hwi = div64_u64((u64)hwi * inuse, inuse_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) iocg->hweight_active = max_t(u32, hwa, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) iocg->hweight_inuse = max_t(u32, hwi, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) iocg->hweight_gen = ioc_gen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) if (hw_activep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) *hw_activep = iocg->hweight_active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) if (hw_inusep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) *hw_inusep = iocg->hweight_inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) * other weights stay unchanged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) static u32 current_hweight_max(struct ioc_gq *iocg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) u32 hwm = WEIGHT_ONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) u32 inuse = iocg->active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) u64 child_inuse_sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) int lvl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) lockdep_assert_held(&iocg->ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) struct ioc_gq *parent = iocg->ancestors[lvl];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) struct ioc_gq *child = iocg->ancestors[lvl + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) parent->child_active_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) return max_t(u32, hwm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) struct blkcg_gq *blkg = iocg_to_blkg(iocg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) u32 weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) lockdep_assert_held(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) weight = iocg->cfg_weight ?: iocc->dfl_weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) if (weight != iocg->weight && iocg->active)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) propagate_weights(iocg, weight, iocg->inuse, true, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) iocg->weight = weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) u64 last_period, cur_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) u64 vtime, vtarget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) * If seem to be already active, just update the stamp to tell the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) * timer that we're still active. We don't mind occassional races.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) if (!list_empty(&iocg->active_list)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) ioc_now(ioc, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) cur_period = atomic64_read(&ioc->cur_period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) if (atomic64_read(&iocg->active_period) != cur_period)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) atomic64_set(&iocg->active_period, cur_period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) /* racy check on internal node IOs, treat as root level IOs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) if (iocg->child_active_sum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) ioc_now(ioc, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) /* update period */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) cur_period = atomic64_read(&ioc->cur_period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) last_period = atomic64_read(&iocg->active_period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) atomic64_set(&iocg->active_period, cur_period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) /* already activated or breaking leaf-only constraint? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) if (!list_empty(&iocg->active_list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) goto succeed_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) for (i = iocg->level - 1; i > 0; i--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) if (!list_empty(&iocg->ancestors[i]->active_list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) goto fail_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) if (iocg->child_active_sum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) goto fail_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) * Always start with the target budget. On deactivation, we throw away
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) * anything above it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) vtarget = now->vnow - ioc->margins.target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) vtime = atomic64_read(&iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) atomic64_add(vtarget - vtime, &iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) atomic64_add(vtarget - vtime, &iocg->done_vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) vtime = vtarget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) * Activate, propagate weight and start period timer if not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) * running. Reset hweight_gen to avoid accidental match from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) * wrapping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) list_add(&iocg->active_list, &ioc->active_iocgs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) propagate_weights(iocg, iocg->weight,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) iocg->last_inuse ?: iocg->weight, true, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) TRACE_IOCG_PATH(iocg_activate, iocg, now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) last_period, cur_period, vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) iocg->activated_at = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) if (ioc->running == IOC_IDLE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) ioc->running = IOC_RUNNING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) ioc->dfgv_period_at = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) ioc->dfgv_period_rem = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) ioc_start_period(ioc, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) succeed_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) fail_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) struct blkcg_gq *blkg = iocg_to_blkg(iocg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) u64 tdelta, delay, new_delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) s64 vover, vover_pct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) u32 hwa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) lockdep_assert_held(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) /* calculate the current delay in effect - 1/2 every second */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) tdelta = now->now - iocg->delay_at;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) if (iocg->delay)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) delay = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) /* calculate the new delay from the debt amount */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) current_hweight(iocg, &hwa, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) vover = atomic64_read(&iocg->vtime) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) vover_pct = div64_s64(100 * vover,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) ioc->period_us * ioc->vtime_base_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) if (vover_pct <= MIN_DELAY_THR_PCT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) new_delay = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) else if (vover_pct >= MAX_DELAY_THR_PCT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) new_delay = MAX_DELAY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) new_delay = MIN_DELAY +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) div_u64((MAX_DELAY - MIN_DELAY) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) (vover_pct - MIN_DELAY_THR_PCT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) /* pick the higher one and apply */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) if (new_delay > delay) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) iocg->delay = new_delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) iocg->delay_at = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) delay = new_delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) if (delay >= MIN_DELAY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) if (!iocg->indelay_since)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) iocg->indelay_since = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) if (iocg->indelay_since) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) iocg->indelay_since = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) iocg->delay = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) blkcg_clear_delay(blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) struct iocg_pcpu_stat *gcs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) lockdep_assert_held(&iocg->ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) lockdep_assert_held(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) WARN_ON_ONCE(list_empty(&iocg->active_list));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) * Once in debt, debt handling owns inuse. @iocg stays at the minimum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) * inuse donating all of it share to others until its debt is paid off.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) if (!iocg->abs_vdebt && abs_cost) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) iocg->indebt_since = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) propagate_weights(iocg, iocg->active, 0, false, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) iocg->abs_vdebt += abs_cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) gcs = get_cpu_ptr(iocg->pcpu_stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) local64_add(abs_cost, &gcs->abs_vusage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) put_cpu_ptr(gcs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) lockdep_assert_held(&iocg->ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) lockdep_assert_held(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) /* make sure that nobody messed with @iocg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) WARN_ON_ONCE(list_empty(&iocg->active_list));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) WARN_ON_ONCE(iocg->inuse > 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) /* if debt is paid in full, restore inuse */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) if (!iocg->abs_vdebt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) iocg->indebt_since = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) propagate_weights(iocg, iocg->active, iocg->last_inuse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) false, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) int flags, void *key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) ctx->vbudget -= cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) if (ctx->vbudget < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) wait->committed = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) * autoremove_wake_function() removes the wait entry only when it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) * actually changed the task state. We want the wait always removed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) * Remove explicitly and use default_wake_function(). Note that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) * order of operations is important as finish_wait() tests whether
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) * @wq_entry is removed without grabbing the lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) default_wake_function(wq_entry, mode, flags, key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) list_del_init_careful(&wq_entry->entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) * addition to iocg->waitq.lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) struct iocg_wake_ctx ctx = { .iocg = iocg };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) u64 vshortage, expires, oexpires;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) s64 vbudget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) u32 hwa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) lockdep_assert_held(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) current_hweight(iocg, &hwa, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) vbudget = now->vnow - atomic64_read(&iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) /* pay off debt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) lockdep_assert_held(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) atomic64_add(vpay, &iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) atomic64_add(vpay, &iocg->done_vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) iocg_pay_debt(iocg, abs_vpay, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) vbudget -= vpay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) if (iocg->abs_vdebt || iocg->delay)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) iocg_kick_delay(iocg, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) * Debt can still be outstanding if we haven't paid all yet or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) * caller raced and called without @pay_debt. Shouldn't wake up waiters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) * under debt. Make sure @vbudget reflects the outstanding amount and is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) * not positive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) if (iocg->abs_vdebt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) vbudget = min_t(s64, 0, vbudget - vdebt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) * Wake up the ones which are due and see how much vtime we'll need for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) * the next one. As paying off debt restores hw_inuse, it must be read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) * after the above debt payment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) ctx.vbudget = vbudget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) current_hweight(iocg, NULL, &ctx.hw_inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) if (!waitqueue_active(&iocg->waitq)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) if (iocg->wait_since) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) iocg->local_stat.wait_us += now->now - iocg->wait_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) iocg->wait_since = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) if (!iocg->wait_since)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) iocg->wait_since = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) if (WARN_ON_ONCE(ctx.vbudget >= 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) /* determine next wakeup, add a timer margin to guarantee chunking */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) vshortage = -ctx.vbudget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) expires = now->now_ns +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) NSEC_PER_USEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) expires += ioc->timer_slack_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) /* if already active and close enough, don't bother */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) if (hrtimer_is_queued(&iocg->waitq_timer) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) abs(oexpires - expires) <= ioc->timer_slack_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) ioc->timer_slack_ns, HRTIMER_MODE_ABS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) bool pay_debt = READ_ONCE(iocg->abs_vdebt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) struct ioc_now now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) ioc_now(iocg->ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) iocg_lock(iocg, pay_debt, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) iocg_kick_waitq(iocg, pay_debt, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) iocg_unlock(iocg, pay_debt, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) return HRTIMER_NORESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) u32 nr_met[2] = { };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) u32 nr_missed[2] = { };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) u64 rq_wait_ns = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) int cpu, rw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) u64 this_rq_wait_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) for (rw = READ; rw <= WRITE; rw++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) u32 this_met = local_read(&stat->missed[rw].nr_met);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) u32 this_missed = local_read(&stat->missed[rw].nr_missed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) nr_met[rw] += this_met - stat->missed[rw].last_met;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) stat->missed[rw].last_met = this_met;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) stat->missed[rw].last_missed = this_missed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) stat->last_rq_wait_ns = this_rq_wait_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) for (rw = READ; rw <= WRITE; rw++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) if (nr_met[rw] + nr_missed[rw])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) missed_ppm_ar[rw] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) nr_met[rw] + nr_missed[rw]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) missed_ppm_ar[rw] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) ioc->period_us * NSEC_PER_USEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) /* was iocg idle this period? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) static bool iocg_is_idle(struct ioc_gq *iocg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) /* did something get issued this period? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) if (atomic64_read(&iocg->active_period) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) atomic64_read(&ioc->cur_period))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) /* is something in flight? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) * Call this function on the target leaf @iocg's to build pre-order traversal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) * list of all the ancestors in @inner_walk. The inner nodes are linked through
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) * ->walk_list and the caller is responsible for dissolving the list after use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) static void iocg_build_inner_walk(struct ioc_gq *iocg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) struct list_head *inner_walk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) int lvl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) WARN_ON_ONCE(!list_empty(&iocg->walk_list));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) /* find the first ancestor which hasn't been visited yet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) if (!list_empty(&iocg->ancestors[lvl]->walk_list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) /* walk down and visit the inner nodes to get pre-order traversal */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) while (++lvl <= iocg->level - 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) struct ioc_gq *inner = iocg->ancestors[lvl];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) /* record traversal order */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) list_add_tail(&inner->walk_list, inner_walk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) /* collect per-cpu counters and propagate the deltas to the parent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) struct iocg_stat new_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) u64 abs_vusage = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) u64 vusage_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) lockdep_assert_held(&iocg->ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) /* collect per-cpu counters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) abs_vusage += local64_read(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) iocg->last_stat_abs_vusage = abs_vusage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) iocg->local_stat.usage_us += iocg->usage_delta_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) /* propagate upwards */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) new_stat.usage_us =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) new_stat.wait_us =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) new_stat.indebt_us =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) new_stat.indelay_us =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) /* propagate the deltas to the parent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) if (iocg->level > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) struct iocg_stat *parent_stat =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) &iocg->ancestors[iocg->level - 1]->desc_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) parent_stat->usage_us +=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) new_stat.usage_us - iocg->last_stat.usage_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) parent_stat->wait_us +=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) new_stat.wait_us - iocg->last_stat.wait_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) parent_stat->indebt_us +=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) new_stat.indebt_us - iocg->last_stat.indebt_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) parent_stat->indelay_us +=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) new_stat.indelay_us - iocg->last_stat.indelay_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) iocg->last_stat = new_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) /* get stat counters ready for reading on all active iocgs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) LIST_HEAD(inner_walk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) struct ioc_gq *iocg, *tiocg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) /* flush leaves and build inner node walk list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) list_for_each_entry(iocg, target_iocgs, active_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) iocg_flush_stat_one(iocg, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) iocg_build_inner_walk(iocg, &inner_walk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) /* keep flushing upwards by walking the inner list backwards */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) iocg_flush_stat_one(iocg, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) list_del_init(&iocg->walk_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) * Determine what @iocg's hweight_inuse should be after donating unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) * capacity. @hwm is the upper bound and used to signal no donation. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) * function also throws away @iocg's excess budget.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) u32 usage, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) u64 vtime = atomic64_read(&iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) s64 excess, delta, target, new_hwi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) /* debt handling owns inuse for debtors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) if (iocg->abs_vdebt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) /* see whether minimum margin requirement is met */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) if (waitqueue_active(&iocg->waitq) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) time_after64(vtime, now->vnow - ioc->margins.min))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) return hwm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) /* throw away excess above target */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) excess = now->vnow - vtime - ioc->margins.target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) if (excess > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) atomic64_add(excess, &iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) atomic64_add(excess, &iocg->done_vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) vtime += excess;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) * Let's say the distance between iocg's and device's vtimes as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) * fraction of period duration is delta. Assuming that the iocg will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) * consume the usage determined above, we want to determine new_hwi so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) * that delta equals MARGIN_TARGET at the end of the next period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) * We need to execute usage worth of IOs while spending the sum of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) * new budget (1 - MARGIN_TARGET) and the leftover from the last period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) * (delta):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) * usage = (1 - MARGIN_TARGET + delta) * new_hwi
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) * Therefore, the new_hwi is:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) * new_hwi = usage / (1 - MARGIN_TARGET + delta)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) now->vnow - ioc->period_at_vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) return clamp_t(s64, new_hwi, 1, hwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) * For work-conservation, an iocg which isn't using all of its share should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) * donate the leftover to other iocgs. There are two ways to achieve this - 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) * #1 is mathematically simpler but has the drawback of requiring synchronous
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) * global hweight_inuse updates when idle iocg's get activated or inuse weights
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) * change due to donation snapbacks as it has the possibility of grossly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) * overshooting what's allowed by the model and vrate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) * #2 is inherently safe with local operations. The donating iocg can easily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) * snap back to higher weights when needed without worrying about impacts on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) * other nodes as the impacts will be inherently correct. This also makes idle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) * iocg activations safe. The only effect activations have is decreasing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) * hweight_inuse of others, the right solution to which is for those iocgs to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) * snap back to higher weights.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) * So, we go with #2. The challenge is calculating how each donating iocg's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) * inuse should be adjusted to achieve the target donation amounts. This is done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) * using Andy's method described in the following pdf.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) * Given the weights and target after-donation hweight_inuse values, Andy's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) * method determines how the proportional distribution should look like at each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) * sibling level to maintain the relative relationship between all non-donating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) * pairs. To roughly summarize, it divides the tree into donating and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) * non-donating parts, calculates global donation rate which is used to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) * determine the target hweight_inuse for each node, and then derives per-level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) * proportions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) * The following pdf shows that global distribution calculated this way can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) * achieved by scaling inuse weights of donating leaves and propagating the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) * adjustments upwards proportionally.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) * Combining the above two, we can determine how each leaf iocg's inuse should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) * be adjusted to achieve the target donation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) * The inline comments use symbols from the last pdf.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) * b is the sum of the absolute budgets in the subtree. 1 for the root node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) * f is the sum of the absolute budgets of non-donating nodes in the subtree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) * t is the sum of the absolute budgets of donating nodes in the subtree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) * w is the weight of the node. w = w_f + w_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) * w_f is the non-donating portion of w. w_f = w * f / b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) * w_b is the donating portion of w. w_t = w * t / b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) * s is the sum of all sibling weights. s = Sum(w) for siblings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) * s_f and s_t are the non-donating and donating portions of s.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) * w_pt is the donating portion of the parent's weight and w'_pt the same value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) * after adjustments. Subscript r denotes the root node's values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) LIST_HEAD(over_hwa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) LIST_HEAD(inner_walk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) struct ioc_gq *iocg, *tiocg, *root_iocg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) u32 after_sum, over_sum, over_target, gamma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) * It's pretty unlikely but possible for the total sum of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) * hweight_after_donation's to be higher than WEIGHT_ONE, which will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) * confuse the following calculations. If such condition is detected,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) * scale down everyone over its full share equally to keep the sum below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) * WEIGHT_ONE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) after_sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) over_sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) list_for_each_entry(iocg, surpluses, surplus_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) u32 hwa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) current_hweight(iocg, &hwa, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) after_sum += iocg->hweight_after_donation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) if (iocg->hweight_after_donation > hwa) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) over_sum += iocg->hweight_after_donation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) list_add(&iocg->walk_list, &over_hwa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) if (after_sum >= WEIGHT_ONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) * The delta should be deducted from the over_sum, calculate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) * target over_sum value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) u32 over_delta = after_sum - (WEIGHT_ONE - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) WARN_ON_ONCE(over_sum <= over_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) over_target = over_sum - over_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) over_target = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) if (over_target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) iocg->hweight_after_donation =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) div_u64((u64)iocg->hweight_after_donation *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) over_target, over_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) list_del_init(&iocg->walk_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) * Build pre-order inner node walk list and prepare for donation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) * adjustment calculations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) list_for_each_entry(iocg, surpluses, surplus_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) iocg_build_inner_walk(iocg, &inner_walk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) WARN_ON_ONCE(root_iocg->level > 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) list_for_each_entry(iocg, &inner_walk, walk_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) iocg->child_adjusted_sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) iocg->hweight_donating = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) iocg->hweight_after_donation = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) * Propagate the donating budget (b_t) and after donation budget (b'_t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) * up the hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) list_for_each_entry(iocg, surpluses, surplus_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) parent->hweight_donating += iocg->hweight_donating;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) parent->hweight_after_donation += iocg->hweight_after_donation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) if (iocg->level > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) parent->hweight_donating += iocg->hweight_donating;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) parent->hweight_after_donation += iocg->hweight_after_donation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) * Calculate inner hwa's (b) and make sure the donation values are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) * within the accepted ranges as we're doing low res calculations with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) * roundups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) list_for_each_entry(iocg, &inner_walk, walk_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) if (iocg->level) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) iocg->hweight_active = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) (u64)parent->hweight_active * iocg->active,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) parent->child_active_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) iocg->hweight_donating = min(iocg->hweight_donating,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) iocg->hweight_active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) iocg->hweight_after_donation = min(iocg->hweight_after_donation,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) iocg->hweight_donating - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) iocg->hweight_donating <= 1 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) iocg->hweight_after_donation == 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) pr_warn("iocg: invalid donation weights in ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) pr_cont(": active=%u donating=%u after=%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) iocg->hweight_active, iocg->hweight_donating,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) iocg->hweight_after_donation);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) * Calculate the global donation rate (gamma) - the rate to adjust
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) * non-donating budgets by.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) * No need to use 64bit multiplication here as the first operand is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) * guaranteed to be smaller than WEIGHT_ONE (1<<16).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) * We know that there are beneficiary nodes and the sum of the donating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) * hweights can't be whole; however, due to the round-ups during hweight
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) * calculations, root_iocg->hweight_donating might still end up equal to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) * or greater than whole. Limit the range when calculating the divider.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) * gamma = (1 - t_r') / (1 - t_r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) gamma = DIV_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) * nodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) list_for_each_entry(iocg, &inner_walk, walk_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) struct ioc_gq *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) u32 inuse, wpt, wptp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) u64 st, sf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) if (iocg->level == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) WEIGHT_ONE - iocg->hweight_after_donation);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) parent = iocg->ancestors[iocg->level - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) /* b' = gamma * b_f + b_t' */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) iocg->hweight_inuse = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) WEIGHT_ONE) + iocg->hweight_after_donation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) /* w' = s' * b' / b'_p */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) inuse = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) parent->hweight_inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) st = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) iocg->child_active_sum * iocg->hweight_donating,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) iocg->hweight_active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) sf = iocg->child_active_sum - st;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) wpt = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) (u64)iocg->active * iocg->hweight_donating,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) iocg->hweight_active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) wptp = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) (u64)inuse * iocg->hweight_after_donation,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) iocg->hweight_inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) * we can finally determine leaf adjustments.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) list_for_each_entry(iocg, surpluses, surplus_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) u32 inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) * In-debt iocgs participated in the donation calculation with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) * the minimum target hweight_inuse. Configuring inuse
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) * accordingly would work fine but debt handling expects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) * @iocg->inuse stay at the minimum and we don't wanna
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) * interfere.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) if (iocg->abs_vdebt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) WARN_ON_ONCE(iocg->inuse > 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) inuse = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) parent->child_adjusted_sum * iocg->hweight_after_donation,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) parent->hweight_inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) TRACE_IOCG_PATH(inuse_transfer, iocg, now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) iocg->inuse, inuse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) iocg->hweight_inuse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) iocg->hweight_after_donation);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) __propagate_weights(iocg, iocg->active, inuse, true, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) /* walk list should be dissolved after use */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) list_del_init(&iocg->walk_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) * A low weight iocg can amass a large amount of debt, for example, when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) * anonymous memory gets reclaimed aggressively. If the system has a lot of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) * memory paired with a slow IO device, the debt can span multiple seconds or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) * more. If there are no other subsequent IO issuers, the in-debt iocg may end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) * up blocked paying its debt while the IO device is idle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) * The following protects against such cases. If the device has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) * sufficiently idle for a while, the debts are halved and delays are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) * recalculated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) struct ioc_gq *iocg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) u64 dur, usage_pct, nr_cycles;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) /* if no debtor, reset the cycle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) if (!nr_debtors) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) ioc->dfgv_period_at = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) ioc->dfgv_period_rem = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) ioc->dfgv_usage_us_sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) * Debtors can pass through a lot of writes choking the device and we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) * don't want to be forgiving debts while the device is struggling from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) * write bursts. If we're missing latency targets, consider the device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) * fully utilized.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) if (ioc->busy_level > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) ioc->dfgv_usage_us_sum += usage_us_sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) * At least DFGV_PERIOD has passed since the last period. Calculate the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) * average usage and reset the period counters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) dur = now->now - ioc->dfgv_period_at;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) ioc->dfgv_period_at = now->now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) ioc->dfgv_usage_us_sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) /* if was too busy, reset everything */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) if (usage_pct > DFGV_USAGE_PCT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) ioc->dfgv_period_rem = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) * Usage is lower than threshold. Let's forgive some debts. Debt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) * forgiveness runs off of the usual ioc timer but its period usually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) * doesn't match ioc's. Compensate the difference by performing the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) * reduction as many times as would fit in the duration since the last
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) * run and carrying over the left-over duration in @ioc->dfgv_period_rem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) * reductions is doubled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) nr_cycles = dur + ioc->dfgv_period_rem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) u64 __maybe_unused old_debt, __maybe_unused old_delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) if (!iocg->abs_vdebt && !iocg->delay)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) spin_lock(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) old_debt = iocg->abs_vdebt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) old_delay = iocg->delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) if (iocg->abs_vdebt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) if (iocg->delay)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) iocg->delay = iocg->delay >> nr_cycles ?: 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) iocg_kick_waitq(iocg, true, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) old_debt, iocg->abs_vdebt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) old_delay, iocg->delay);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) spin_unlock(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) static void ioc_timer_fn(struct timer_list *timer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) struct ioc *ioc = container_of(timer, struct ioc, timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) struct ioc_gq *iocg, *tiocg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) struct ioc_now now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) LIST_HEAD(surpluses);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) u64 usage_us_sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) u32 missed_ppm[2], rq_wait_pct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) u64 period_vtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) int prev_busy_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) /* how were the latencies during the period? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) /* take care of active iocgs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) ioc_now(ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) period_vtime = now.vnow - ioc->period_at_vtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) if (WARN_ON_ONCE(!period_vtime)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) * Waiters determine the sleep durations based on the vrate they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) * saw at the time of sleep. If vrate has increased, some waiters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) * could be sleeping for too long. Wake up tardy waiters which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) * should have woken up in the last period and expire idle iocgs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) !iocg->delay && !iocg_is_idle(iocg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) spin_lock(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) /* flush wait and indebt stat deltas */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) if (iocg->wait_since) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) iocg->local_stat.wait_us += now.now - iocg->wait_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) iocg->wait_since = now.now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) if (iocg->indebt_since) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) iocg->local_stat.indebt_us +=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) now.now - iocg->indebt_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) iocg->indebt_since = now.now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) if (iocg->indelay_since) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) iocg->local_stat.indelay_us +=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) now.now - iocg->indelay_since;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) iocg->indelay_since = now.now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) iocg->delay) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) /* might be oversleeping vtime / hweight changes, kick */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) iocg_kick_waitq(iocg, true, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) if (iocg->abs_vdebt || iocg->delay)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) nr_debtors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) } else if (iocg_is_idle(iocg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) /* no waiter and idle, deactivate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) u64 vtime = atomic64_read(&iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) s64 excess;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) * @iocg has been inactive for a full duration and will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) * have a high budget. Account anything above target as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) * error and throw away. On reactivation, it'll start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) * with the target budget.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) excess = now.vnow - vtime - ioc->margins.target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) if (excess > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) u32 old_hwi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) current_hweight(iocg, NULL, &old_hwi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) ioc->vtime_err -= div64_u64(excess * old_hwi,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) WEIGHT_ONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) __propagate_weights(iocg, 0, 0, false, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) list_del_init(&iocg->active_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) spin_unlock(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) commit_weights(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) * Wait and indebt stat are flushed above and the donation calculation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) * below needs updated usage stat. Let's bring stat up-to-date.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) iocg_flush_stat(&ioc->active_iocgs, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) /* calc usage and see whether some weights need to be moved around */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) u64 vdone, vtime, usage_us, usage_dur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) u32 usage, hw_active, hw_inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) * Collect unused and wind vtime closer to vnow to prevent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) * iocgs from accumulating a large amount of budget.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) vdone = atomic64_read(&iocg->done_vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) vtime = atomic64_read(&iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) current_hweight(iocg, &hw_active, &hw_inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) * Latency QoS detection doesn't account for IOs which are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) * in-flight for longer than a period. Detect them by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) * comparing vdone against period start. If lagging behind
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) * IOs from past periods, don't increase vrate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) time_after64(vtime, vdone) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) time_after64(vtime, now.vnow -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) MAX_LAGGING_PERIODS * period_vtime) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) time_before64(vdone, now.vnow - period_vtime))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) nr_lagging++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) * Determine absolute usage factoring in in-flight IOs to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) * high-latency completions appearing as idle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) usage_us = iocg->usage_delta_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) usage_us_sum += usage_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) if (vdone != vtime) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) u64 inflight_us = DIV64_U64_ROUND_UP(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) cost_to_abs_cost(vtime - vdone, hw_inuse),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) ioc->vtime_base_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) usage_us = max(usage_us, inflight_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) /* convert to hweight based usage ratio */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) if (time_after64(iocg->activated_at, ioc->period_at))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) usage_dur = max_t(u64, now.now - ioc->period_at, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) usage = clamp_t(u32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) usage_dur),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 1, WEIGHT_ONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) /* see whether there's surplus vtime */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) if (hw_inuse < hw_active ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) (!waitqueue_active(&iocg->waitq) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) time_before64(vtime, now.vnow - ioc->margins.low))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) u32 hwa, old_hwi, hwm, new_hwi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) * Already donating or accumulated enough to start.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) * Determine the donation amount.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) current_hweight(iocg, &hwa, &old_hwi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) hwm = current_hweight_max(iocg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) usage, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) * Donation calculation assumes hweight_after_donation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) * to be positive, a condition that a donor w/ hwa < 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) * can't meet. Don't bother with donation if hwa is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) * below 2. It's not gonna make a meaningful difference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) * anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) if (new_hwi < hwm && hwa >= 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) iocg->hweight_donating = hwa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) iocg->hweight_after_donation = new_hwi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) list_add(&iocg->surplus_list, &surpluses);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) iocg->inuse, iocg->active,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) iocg->hweight_inuse, new_hwi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) __propagate_weights(iocg, iocg->active,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) iocg->active, true, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) nr_shortages++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) /* genuinely short on vtime */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) nr_shortages++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) if (!list_empty(&surpluses) && nr_shortages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) transfer_surpluses(&surpluses, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) commit_weights(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) /* surplus list should be dissolved after use */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) list_del_init(&iocg->surplus_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) * If q is getting clogged or we're missing too much, we're issuing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) * too much IO and should lower vtime rate. If we're not missing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) * and experiencing shortages but not surpluses, we're too stingy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) * and should increase vtime rate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) prev_busy_level = ioc->busy_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) missed_ppm[READ] > ppm_rthr ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) missed_ppm[WRITE] > ppm_wthr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) /* clearly missing QoS targets, slow down vrate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) ioc->busy_level = max(ioc->busy_level, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) ioc->busy_level++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) /* QoS targets are being met with >25% margin */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) if (nr_shortages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) * We're throttling while the device has spare
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) * capacity. If vrate was being slowed down, stop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) ioc->busy_level = min(ioc->busy_level, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) * If there are IOs spanning multiple periods, wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) * them out before pushing the device harder.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) if (!nr_lagging)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) ioc->busy_level--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) * Nobody is being throttled and the users aren't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) * issuing enough IOs to saturate the device. We
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) * simply don't know how close the device is to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) * saturation. Coast.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) ioc->busy_level = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) /* inside the hysterisis margin, we're good */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) ioc->busy_level = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) u64 vrate = ioc->vtime_base_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) /* rq_wait signal is always reliable, ignore user vrate_min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) vrate_min = VRATE_MIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) * If vrate is out of bounds, apply clamp gradually as the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) * bounds can change abruptly. Otherwise, apply busy_level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) * based adjustment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) if (vrate < vrate_min) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) vrate = min(vrate, vrate_min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) } else if (vrate > vrate_max) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) vrate = max(vrate, vrate_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) int idx = min_t(int, abs(ioc->busy_level),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) ARRAY_SIZE(vrate_adj_pct) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) u32 adj_pct = vrate_adj_pct[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) if (ioc->busy_level > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) adj_pct = 100 - adj_pct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) adj_pct = 100 + adj_pct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) vrate_min, vrate_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) nr_lagging, nr_shortages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) ioc->vtime_base_rate = vrate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) ioc_refresh_margins(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) missed_ppm, rq_wait_pct, nr_lagging,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) nr_shortages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) ioc_refresh_params(ioc, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) * This period is done. Move onto the next one. If nothing's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) * going on with the device, stop the timer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384) atomic64_inc(&ioc->cur_period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) if (ioc->running != IOC_STOP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) if (!list_empty(&ioc->active_iocgs)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) ioc_start_period(ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) ioc->busy_level = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) ioc->vtime_err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) ioc->running = IOC_IDLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) ioc_refresh_vrate(ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) u64 abs_cost, struct ioc_now *now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) struct ioc_margins *margins = &ioc->margins;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) u32 hwi, adj_step;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) s64 margin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) u64 cost, new_inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) current_hweight(iocg, NULL, &hwi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) old_hwi = hwi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) cost = abs_cost_to_cost(abs_cost, hwi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) margin = now->vnow - vtime - cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) /* debt handling owns inuse for debtors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) if (iocg->abs_vdebt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) return cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) * We only increase inuse during period and do so iff the margin has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) * deteriorated since the previous adjustment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) if (margin >= iocg->saved_margin || margin >= margins->low ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) iocg->inuse == iocg->active)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) return cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) /* we own inuse only when @iocg is in the normal active state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) return cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) * Bump up inuse till @abs_cost fits in the existing budget.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) * adj_step must be determined after acquiring ioc->lock - we might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) * have raced and lost to another thread for activation and could
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) * be reading 0 iocg->active before ioc->lock which will lead to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) * infinite loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) new_inuse = iocg->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) new_inuse = new_inuse + adj_step;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) propagate_weights(iocg, iocg->active, new_inuse, true, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) current_hweight(iocg, NULL, &hwi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) cost = abs_cost_to_cost(abs_cost, hwi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) } while (time_after64(vtime + cost, now->vnow) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) iocg->inuse != iocg->active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) TRACE_IOCG_PATH(inuse_adjust, iocg, now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) old_inuse, iocg->inuse, old_hwi, hwi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) return cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) bool is_merge, u64 *costp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) u64 coef_seqio, coef_randio, coef_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) u64 seek_pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) u64 cost = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) switch (bio_op(bio)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) case REQ_OP_READ:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) case REQ_OP_WRITE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) if (iocg->cursor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) if (!is_merge) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) if (seek_pages > LCOEF_RANDIO_PAGES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) cost += coef_randio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) cost += coef_seqio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) cost += pages * coef_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) *costp = cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) u64 cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) return cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) u64 *costp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) switch (req_op(rq)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) case REQ_OP_READ:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) case REQ_OP_WRITE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) *costp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) u64 cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) calc_size_vtime_cost_builtin(rq, ioc, &cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) return cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) struct blkcg_gq *blkg = bio->bi_blkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) struct ioc *ioc = rqos_to_ioc(rqos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) struct ioc_gq *iocg = blkg_to_iocg(blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) struct ioc_now now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) struct iocg_wait wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) u64 abs_cost, cost, vtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) bool use_debt, ioc_locked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) /* bypass IOs if disabled, still initializing, or for root cgroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) if (!ioc->enabled || !iocg || !iocg->level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) /* calculate the absolute vtime cost */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) abs_cost = calc_vtime_cost(bio, iocg, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) if (!abs_cost)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) if (!iocg_activate(iocg, &now))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) iocg->cursor = bio_end_sector(bio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) vtime = atomic64_read(&iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) * If no one's waiting and within budget, issue right away. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) * tests are racy but the races aren't systemic - we only miss once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) * in a while which is fine.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) time_before_eq64(vtime + cost, now.vnow)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) iocg_commit_bio(iocg, bio, abs_cost, cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) * We're over budget. This can be handled in two ways. IOs which may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) * cause priority inversions are punted to @ioc->aux_iocg and charged as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) * whether debt handling is needed and acquire locks accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) retry_lock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) iocg_lock(iocg, ioc_locked, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) * @iocg must stay activated for debt and waitq handling. Deactivation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) * is synchronized against both ioc->lock and waitq.lock and we won't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) * get deactivated as long as we're waiting or has debt, so we're good
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) * if we're activated here. In the unlikely cases that we aren't, just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) * issue the IO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) if (unlikely(list_empty(&iocg->active_list))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) iocg_unlock(iocg, ioc_locked, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) iocg_commit_bio(iocg, bio, abs_cost, cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) * We're over budget. If @bio has to be issued regardless, remember
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) * off the debt before waking more IOs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) * This way, the debt is continuously paid off each period with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) * actual budget available to the cgroup. If we just wound vtime, we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) * would incorrectly use the current hw_inuse for the entire amount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) * which, for example, can lead to the cgroup staying blocked for a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) * long time even with substantially raised hw_inuse.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) * An iocg with vdebt should stay online so that the timer can keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) * deducting its vdebt and [de]activate use_delay mechanism
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) * accordingly. We don't want to race against the timer trying to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) * clear them and leave @iocg inactive w/ dangling use_delay heavily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) * penalizing the cgroup and its descendants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) if (use_debt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) iocg_incur_debt(iocg, abs_cost, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) if (iocg_kick_delay(iocg, &now))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) blkcg_schedule_throttle(rqos->q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) iocg_unlock(iocg, ioc_locked, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) /* guarantee that iocgs w/ waiters have maximum inuse */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) if (!ioc_locked) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) iocg_unlock(iocg, false, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) ioc_locked = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) goto retry_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) propagate_weights(iocg, iocg->active, iocg->active, true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) * Append self to the waitq and schedule the wakeup timer if we're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) * the first waiter. The timer duration is calculated based on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) * current vrate. vtime and hweight changes can make it too short
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) * or too long. Each wait entry records the absolute cost it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) * waiting for to allow re-evaluation using a custom wait entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) * If too short, the timer simply reschedules itself. If too long,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) * the period timer will notice and trigger wakeups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) * All waiters are on iocg->waitq and the wait states are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) * synchronized using waitq.lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) wait.wait.private = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) wait.bio = bio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) wait.abs_cost = abs_cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) wait.committed = false; /* will be set true by waker */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) iocg_kick_waitq(iocg, ioc_locked, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) iocg_unlock(iocg, ioc_locked, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) while (true) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) set_current_state(TASK_UNINTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) if (wait.committed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) io_schedule();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) /* waker already committed us, proceed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) finish_wait(&iocg->waitq, &wait.wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) struct bio *bio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) struct ioc *ioc = rqos_to_ioc(rqos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) sector_t bio_end = bio_end_sector(bio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) struct ioc_now now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) u64 vtime, abs_cost, cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) /* bypass if disabled, still initializing, or for root cgroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) if (!ioc->enabled || !iocg || !iocg->level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) abs_cost = calc_vtime_cost(bio, iocg, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) if (!abs_cost)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) ioc_now(ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) vtime = atomic64_read(&iocg->vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) /* update cursor if backmerging into the request at the cursor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) if (blk_rq_pos(rq) < bio_end &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) iocg->cursor = bio_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) * Charge if there's enough vtime budget and the existing request has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) * cost assigned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) if (rq->bio && rq->bio->bi_iocost_cost &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) iocg_commit_bio(iocg, bio, abs_cost, cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709) * Otherwise, account it as debt if @iocg is online, which it should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710) * be for the vast majority of cases. See debt handling in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) * ioc_rqos_throttle() for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713) spin_lock_irqsave(&ioc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) spin_lock(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) if (likely(!list_empty(&iocg->active_list))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) iocg_incur_debt(iocg, abs_cost, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) if (iocg_kick_delay(iocg, &now))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) blkcg_schedule_throttle(rqos->q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) iocg_commit_bio(iocg, bio, abs_cost, cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) spin_unlock(&iocg->waitq.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) spin_unlock_irqrestore(&ioc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) if (iocg && bio->bi_iocost_cost)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) struct ioc *ioc = rqos_to_ioc(rqos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740) struct ioc_pcpu_stat *ccs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) u64 on_q_ns, rq_wait_ns, size_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) int pidx, rw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) switch (req_op(rq) & REQ_OP_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) case REQ_OP_READ:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) pidx = QOS_RLAT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) rw = READ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) case REQ_OP_WRITE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) pidx = QOS_WLAT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754) rw = WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) ccs = get_cpu_ptr(ioc->pcpu_stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) if (on_q_ns <= size_nsec ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) local_inc(&ccs->missed[rw].nr_met);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770) local_inc(&ccs->missed[rw].nr_missed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) local64_add(rq_wait_ns, &ccs->rq_wait_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) put_cpu_ptr(ccs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) struct ioc *ioc = rqos_to_ioc(rqos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) ioc_refresh_params(ioc, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) static void ioc_rqos_exit(struct rq_qos *rqos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) struct ioc *ioc = rqos_to_ioc(rqos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) ioc->running = IOC_STOP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) del_timer_sync(&ioc->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) free_percpu(ioc->pcpu_stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) kfree(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) static struct rq_qos_ops ioc_rqos_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) .throttle = ioc_rqos_throttle,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) .merge = ioc_rqos_merge,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804) .done_bio = ioc_rqos_done_bio,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) .done = ioc_rqos_done,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) .queue_depth_changed = ioc_rqos_queue_depth_changed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807) .exit = ioc_rqos_exit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) static int blk_iocost_init(struct request_queue *q)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) struct ioc *ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) struct rq_qos *rqos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814) int i, cpu, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) if (!ioc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821) if (!ioc->pcpu_stat) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822) kfree(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) local_set(&ccs->missed[i].nr_met, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831) local_set(&ccs->missed[i].nr_missed, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) local64_set(&ccs->rq_wait_ns, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) rqos = &ioc->rqos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) rqos->id = RQ_QOS_COST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) rqos->ops = &ioc_rqos_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) rqos->q = q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) spin_lock_init(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) timer_setup(&ioc->timer, ioc_timer_fn, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) INIT_LIST_HEAD(&ioc->active_iocgs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) ioc->running = IOC_IDLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) ioc->vtime_base_rate = VTIME_PER_USEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) ioc->period_at = ktime_to_us(ktime_get());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) atomic64_set(&ioc->cur_period, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851) atomic_set(&ioc->hweight_gen, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854) ioc->autop_idx = AUTOP_INVALID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) ioc_refresh_params(ioc, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859) * rqos must be added before activation to allow iocg_pd_init() to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860) * lookup the ioc from q. This means that the rqos methods may get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861) * called before policy activation completion, can't assume that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862) * target bio has an iocg associated and need to test for NULL iocg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864) rq_qos_add(q, rqos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865) ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) rq_qos_del(q, rqos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) free_percpu(ioc->pcpu_stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) kfree(ioc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) struct ioc_cgrp *iocc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) if (!iocc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) return &iocc->cpd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) static void ioc_cpd_free(struct blkcg_policy_data *cpd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) kfree(container_of(cpd, struct ioc_cgrp, cpd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892) static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893) struct blkcg *blkcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895) int levels = blkcg->css.cgroup->level + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) struct ioc_gq *iocg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) if (!iocg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) if (!iocg->pcpu_stat) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) kfree(iocg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) return &iocg->pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) static void ioc_pd_init(struct blkg_policy_data *pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) struct ioc_gq *iocg = pd_to_iocg(pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) struct ioc *ioc = q_to_ioc(blkg->q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) struct ioc_now now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) struct blkcg_gq *tblkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) ioc_now(ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922) iocg->ioc = ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923) atomic64_set(&iocg->vtime, now.vnow);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924) atomic64_set(&iocg->done_vtime, now.vnow);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) INIT_LIST_HEAD(&iocg->active_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) INIT_LIST_HEAD(&iocg->walk_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928) INIT_LIST_HEAD(&iocg->surplus_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929) iocg->hweight_active = WEIGHT_ONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930) iocg->hweight_inuse = WEIGHT_ONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932) init_waitqueue_head(&iocg->waitq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933) hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934) iocg->waitq_timer.function = iocg_waitq_timer_fn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936) iocg->level = blkg->blkcg->css.cgroup->level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938) for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939) struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) iocg->ancestors[tiocg->level] = tiocg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943) spin_lock_irqsave(&ioc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944) weight_updated(iocg, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945) spin_unlock_irqrestore(&ioc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948) static void ioc_pd_free(struct blkg_policy_data *pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950) struct ioc_gq *iocg = pd_to_iocg(pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954) if (ioc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955) spin_lock_irqsave(&ioc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957) if (!list_empty(&iocg->active_list)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958) struct ioc_now now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) ioc_now(ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) propagate_weights(iocg, 0, 0, false, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) list_del_init(&iocg->active_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) WARN_ON_ONCE(!list_empty(&iocg->walk_list));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) spin_unlock_irqrestore(&ioc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) hrtimer_cancel(&iocg->waitq_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) free_percpu(iocg->pcpu_stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) kfree(iocg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) struct ioc_gq *iocg = pd_to_iocg(pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) struct ioc *ioc = iocg->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) size_t pos = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) if (!ioc->enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) if (iocg->level == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) ioc->vtime_base_rate * 10000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) VTIME_PER_USEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) vp10k / 100, vp10k % 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) iocg->last_stat.usage_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) if (blkcg_debug_stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) pos += scnprintf(buf + pos, size - pos,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) iocg->last_stat.wait_us,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) iocg->last_stat.indebt_us,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) iocg->last_stat.indelay_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) return pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) int off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) const char *dname = blkg_dev_name(pd->blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) struct ioc_gq *iocg = pd_to_iocg(pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) if (dname && iocg->cfg_weight)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013) seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) static int ioc_weight_show(struct seq_file *sf, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) &blkcg_policy_iocost, seq_cft(sf)->private, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) struct blkcg *blkcg = css_to_blkcg(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) struct blkg_conf_ctx ctx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) struct ioc_now now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) struct ioc_gq *iocg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) u32 v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) if (!strchr(buf, ':')) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) struct blkcg_gq *blkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043) if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049) spin_lock_irq(&blkcg->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) iocc->dfl_weight = v * WEIGHT_ONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) struct ioc_gq *iocg = blkg_to_iocg(blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054) if (iocg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) spin_lock(&iocg->ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) ioc_now(iocg->ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) weight_updated(iocg, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) spin_unlock(&iocg->ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) spin_unlock_irq(&blkcg->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070) iocg = blkg_to_iocg(ctx.blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072) if (!strncmp(ctx.body, "default", 7)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073) v = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075) if (!sscanf(ctx.body, "%u", &v))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077) if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) spin_lock(&iocg->ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) iocg->cfg_weight = v * WEIGHT_ONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) ioc_now(iocg->ioc, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) weight_updated(iocg, &now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) spin_unlock(&iocg->ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) blkg_conf_finish(&ctx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090) einval:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091) blkg_conf_finish(&ctx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) int off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) const char *dname = blkg_dev_name(pd->blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) struct ioc *ioc = pd_to_iocg(pd)->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) if (!dname)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105) dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106) ioc->params.qos[QOS_RPPM] / 10000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107) ioc->params.qos[QOS_RPPM] % 10000 / 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108) ioc->params.qos[QOS_RLAT],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109) ioc->params.qos[QOS_WPPM] / 10000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110) ioc->params.qos[QOS_WPPM] % 10000 / 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111) ioc->params.qos[QOS_WLAT],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112) ioc->params.qos[QOS_MIN] / 10000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) ioc->params.qos[QOS_MIN] % 10000 / 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) ioc->params.qos[QOS_MAX] / 10000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) ioc->params.qos[QOS_MAX] % 10000 / 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) static int ioc_qos_show(struct seq_file *sf, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123) blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124) &blkcg_policy_iocost, seq_cft(sf)->private, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) static const match_table_t qos_ctrl_tokens = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) { QOS_ENABLE, "enable=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) { QOS_CTRL, "ctrl=%s" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) { NR_QOS_CTRL_PARAMS, NULL },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) static const match_table_t qos_tokens = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) { QOS_RPPM, "rpct=%s" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) { QOS_RLAT, "rlat=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) { QOS_WPPM, "wpct=%s" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) { QOS_WLAT, "wlat=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139) { QOS_MIN, "min=%s" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140) { QOS_MAX, "max=%s" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141) { NR_QOS_PARAMS, NULL },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144) static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145) size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147) struct gendisk *disk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148) struct ioc *ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149) u32 qos[NR_QOS_PARAMS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150) bool enable, user;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151) char *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154) disk = blkcg_conf_get_disk(&input);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155) if (IS_ERR(disk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156) return PTR_ERR(disk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158) ioc = q_to_ioc(disk->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159) if (!ioc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160) ret = blk_iocost_init(disk->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163) ioc = q_to_ioc(disk->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167) memcpy(qos, ioc->params.qos, sizeof(qos));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168) enable = ioc->enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169) user = ioc->user_qos_params;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172) while ((p = strsep(&input, " \t\n"))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173) substring_t args[MAX_OPT_ARGS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174) char buf[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175) int tok;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176) s64 v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178) if (!*p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181) switch (match_token(p, qos_ctrl_tokens, args)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182) case QOS_ENABLE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183) match_u64(&args[0], &v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3184) enable = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3185) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3186) case QOS_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3187) match_strlcpy(buf, &args[0], sizeof(buf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3188) if (!strcmp(buf, "auto"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3189) user = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3190) else if (!strcmp(buf, "user"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3191) user = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3192) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3193) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3194) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3197) tok = match_token(p, qos_tokens, args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3198) switch (tok) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3199) case QOS_RPPM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3200) case QOS_WPPM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3201) if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3202) sizeof(buf))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3203) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3204) if (cgroup_parse_float(buf, 2, &v))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3205) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3206) if (v < 0 || v > 10000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3207) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3208) qos[tok] = v * 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3209) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3210) case QOS_RLAT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3211) case QOS_WLAT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3212) if (match_u64(&args[0], &v))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3213) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3214) qos[tok] = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3215) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3216) case QOS_MIN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3217) case QOS_MAX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3218) if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3219) sizeof(buf))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3220) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3221) if (cgroup_parse_float(buf, 2, &v))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3222) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3223) if (v < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3224) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3225) qos[tok] = clamp_t(s64, v * 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3226) VRATE_MIN_PPM, VRATE_MAX_PPM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3227) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3228) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3229) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3231) user = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3232) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3234) if (qos[QOS_MIN] > qos[QOS_MAX])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3235) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3236)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3237) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3239) if (enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3240) blk_stat_enable_accounting(ioc->rqos.q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3241) blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3242) ioc->enabled = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3243) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3244) blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3245) ioc->enabled = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3248) if (user) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3249) memcpy(ioc->params.qos, qos, sizeof(qos));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3250) ioc->user_qos_params = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3251) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3252) ioc->user_qos_params = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3255) ioc_refresh_params(ioc, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3256) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3258) put_disk_and_module(disk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3259) return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3260) einval:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3261) ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3262) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3263) put_disk_and_module(disk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3264) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3267) static u64 ioc_cost_model_prfill(struct seq_file *sf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3268) struct blkg_policy_data *pd, int off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3270) const char *dname = blkg_dev_name(pd->blkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3271) struct ioc *ioc = pd_to_iocg(pd)->ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3272) u64 *u = ioc->params.i_lcoefs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3273)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3274) if (!dname)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3275) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3277) seq_printf(sf, "%s ctrl=%s model=linear "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3278) "rbps=%llu rseqiops=%llu rrandiops=%llu "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3279) "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3280) dname, ioc->user_cost_model ? "user" : "auto",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3281) u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3282) u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3283) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3286) static int ioc_cost_model_show(struct seq_file *sf, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3288) struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3290) blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3291) &blkcg_policy_iocost, seq_cft(sf)->private, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3292) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3295) static const match_table_t cost_ctrl_tokens = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3296) { COST_CTRL, "ctrl=%s" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3297) { COST_MODEL, "model=%s" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3298) { NR_COST_CTRL_PARAMS, NULL },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3299) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3301) static const match_table_t i_lcoef_tokens = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3302) { I_LCOEF_RBPS, "rbps=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3303) { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3304) { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3305) { I_LCOEF_WBPS, "wbps=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3306) { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3307) { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3308) { NR_I_LCOEFS, NULL },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3309) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3311) static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3312) size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3313) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3314) struct gendisk *disk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3315) struct ioc *ioc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3316) u64 u[NR_I_LCOEFS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3317) bool user;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3318) char *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3319) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3321) disk = blkcg_conf_get_disk(&input);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3322) if (IS_ERR(disk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3323) return PTR_ERR(disk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3324)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3325) ioc = q_to_ioc(disk->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3326) if (!ioc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3327) ret = blk_iocost_init(disk->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3328) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3329) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3330) ioc = q_to_ioc(disk->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3332)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3333) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3334) memcpy(u, ioc->params.i_lcoefs, sizeof(u));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3335) user = ioc->user_cost_model;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3336) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3338) while ((p = strsep(&input, " \t\n"))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3339) substring_t args[MAX_OPT_ARGS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3340) char buf[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3341) int tok;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3342) u64 v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3343)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3344) if (!*p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3345) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3346)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3347) switch (match_token(p, cost_ctrl_tokens, args)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3348) case COST_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3349) match_strlcpy(buf, &args[0], sizeof(buf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3350) if (!strcmp(buf, "auto"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3351) user = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3352) else if (!strcmp(buf, "user"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3353) user = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3354) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3355) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3356) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3357) case COST_MODEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3358) match_strlcpy(buf, &args[0], sizeof(buf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3359) if (strcmp(buf, "linear"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3360) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3361) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3364) tok = match_token(p, i_lcoef_tokens, args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3365) if (tok == NR_I_LCOEFS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3366) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3367) if (match_u64(&args[0], &v))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3368) goto einval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3369) u[tok] = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3370) user = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3373) spin_lock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3374) if (user) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3375) memcpy(ioc->params.i_lcoefs, u, sizeof(u));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3376) ioc->user_cost_model = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3377) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3378) ioc->user_cost_model = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3379) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3380) ioc_refresh_params(ioc, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3381) spin_unlock_irq(&ioc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3383) put_disk_and_module(disk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3384) return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3385)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3386) einval:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3387) ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3388) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3389) put_disk_and_module(disk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3390) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3393) static struct cftype ioc_files[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3394) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3395) .name = "weight",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3396) .flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3397) .seq_show = ioc_weight_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3398) .write = ioc_weight_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3399) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3400) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3401) .name = "cost.qos",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3402) .flags = CFTYPE_ONLY_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3403) .seq_show = ioc_qos_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3404) .write = ioc_qos_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3405) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3406) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3407) .name = "cost.model",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3408) .flags = CFTYPE_ONLY_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3409) .seq_show = ioc_cost_model_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3410) .write = ioc_cost_model_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3411) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3412) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3413) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3415) static struct blkcg_policy blkcg_policy_iocost = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3416) .dfl_cftypes = ioc_files,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3417) .cpd_alloc_fn = ioc_cpd_alloc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3418) .cpd_free_fn = ioc_cpd_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3419) .pd_alloc_fn = ioc_pd_alloc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3420) .pd_init_fn = ioc_pd_init,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3421) .pd_free_fn = ioc_pd_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3422) .pd_stat_fn = ioc_pd_stat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3423) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3424)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3425) static int __init ioc_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3426) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3427) return blkcg_policy_register(&blkcg_policy_iocost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3428) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3430) static void __exit ioc_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3431) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3432) blkcg_policy_unregister(&blkcg_policy_iocost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3433) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3434)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3435) module_init(ioc_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3436) module_exit(ioc_exit);