Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * Copyright 2003 PathScale, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (C) 2003 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Licensed under the GPL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #define __FRAME_OFFSETS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <asm/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <asm/ptrace-abi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * determines which flags the user has access to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * 1 = access 0 = no access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define FLAG_MASK 0x44dd5UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) static const int reg_offsets[] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	[R8 >> 3] = HOST_R8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 	[R9 >> 3] = HOST_R9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 	[R10 >> 3] = HOST_R10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 	[R11 >> 3] = HOST_R11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 	[R12 >> 3] = HOST_R12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	[R13 >> 3] = HOST_R13,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 	[R14 >> 3] = HOST_R14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 	[R15 >> 3] = HOST_R15,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	[RIP >> 3] = HOST_IP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	[RSP >> 3] = HOST_SP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	[RAX >> 3] = HOST_AX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	[RBX >> 3] = HOST_BX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	[RCX >> 3] = HOST_CX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	[RDX >> 3] = HOST_DX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	[RSI >> 3] = HOST_SI,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	[RDI >> 3] = HOST_DI,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	[RBP >> 3] = HOST_BP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	[CS >> 3] = HOST_CS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	[SS >> 3] = HOST_SS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	[FS_BASE >> 3] = HOST_FS_BASE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	[GS_BASE >> 3] = HOST_GS_BASE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	[DS >> 3] = HOST_DS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	[ES >> 3] = HOST_ES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	[FS >> 3] = HOST_FS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	[GS >> 3] = HOST_GS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	[EFLAGS >> 3] = HOST_EFLAGS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	[ORIG_RAX >> 3] = HOST_ORIG_AX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) int putreg(struct task_struct *child, int regno, unsigned long value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	switch (regno) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	case R8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	case R9:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	case R10:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	case R11:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	case R12:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	case R13:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	case R14:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	case R15:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	case RIP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	case RSP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	case RAX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	case RBX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	case RCX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	case RDX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	case RSI:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	case RDI:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	case RBP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	case ORIG_RAX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 		/* Update the syscall number. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 		UPT_SYSCALL_NR(&child->thread.regs.regs) = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	case FS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	case GS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	case DS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	case ES:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	case SS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	case CS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		if (value && (value & 3) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 		value &= 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	case FS_BASE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	case GS_BASE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		if (!((value >> 48) == 0 || (value >> 48) == 0xffff))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	case EFLAGS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		value &= FLAG_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 		child->thread.regs.regs.gp[HOST_EFLAGS] |= value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 		panic("Bad register in putreg(): %d\n", regno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	child->thread.regs.regs.gp[reg_offsets[regno >> 3]] = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) int poke_user(struct task_struct *child, long addr, long data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	if ((addr & 3) || addr < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	if (addr < MAX_REG_OFFSET)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		return putreg(child, addr, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	else if ((addr >= offsetof(struct user, u_debugreg[0])) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		(addr <= offsetof(struct user, u_debugreg[7]))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		addr -= offsetof(struct user, u_debugreg[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		addr = addr >> 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		if ((addr == 4) || (addr == 5))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		child->thread.arch.debugregs[addr] = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) unsigned long getreg(struct task_struct *child, int regno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	unsigned long mask = ~0UL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	switch (regno) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	case R8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	case R9:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	case R10:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	case R11:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	case R12:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	case R13:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	case R14:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	case R15:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	case RIP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	case RSP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	case RAX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	case RBX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	case RCX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	case RDX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	case RSI:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	case RDI:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	case RBP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	case ORIG_RAX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	case EFLAGS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	case FS_BASE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	case GS_BASE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	case FS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	case GS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	case DS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	case ES:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	case SS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	case CS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		mask = 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		panic("Bad register in getreg: %d\n", regno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	return mask & child->thread.regs.regs.gp[reg_offsets[regno >> 3]];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) int peek_user(struct task_struct *child, long addr, long data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	/* read the word at location addr in the USER area. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	unsigned long tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	if ((addr & 3) || addr < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	tmp = 0;  /* Default return condition */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	if (addr < MAX_REG_OFFSET)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		tmp = getreg(child, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	else if ((addr >= offsetof(struct user, u_debugreg[0])) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 		(addr <= offsetof(struct user, u_debugreg[7]))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 		addr -= offsetof(struct user, u_debugreg[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 		addr = addr >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		tmp = child->thread.arch.debugregs[addr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	return put_user(tmp, (unsigned long *) data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) /* XXX Mostly copied from sys-i386 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) int is_syscall(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	unsigned short instr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	int n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	n = copy_from_user(&instr, (void __user *) addr, sizeof(instr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	if (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		 * access_process_vm() grants access to vsyscall and stub,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		 * while copy_from_user doesn't. Maybe access_process_vm is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 		 * slow, but that doesn't matter, since it will be called only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 		 * in case of singlestepping, if copy_from_user failed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		n = access_process_vm(current, addr, &instr, sizeof(instr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 				FOLL_FORCE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 		if (n != sizeof(instr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 			printk("is_syscall : failed to read instruction from "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 			       "0x%lx\n", addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	/* sysenter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	return instr == 0x050f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) static int get_fpregs(struct user_i387_struct __user *buf, struct task_struct *child)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	int err, n, cpu = ((struct thread_info *) child->stack)->cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	struct user_i387_struct fpregs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	err = save_i387_registers(userspace_pid[cpu],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 				  (unsigned long *) &fpregs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	n = copy_to_user(buf, &fpregs, sizeof(fpregs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	if (n > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	return n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) static int set_fpregs(struct user_i387_struct __user *buf, struct task_struct *child)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	int n, cpu = ((struct thread_info *) child->stack)->cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	struct user_i387_struct fpregs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	n = copy_from_user(&fpregs, buf, sizeof(fpregs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	if (n > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	return restore_i387_registers(userspace_pid[cpu],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 				      (unsigned long *) &fpregs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) long subarch_ptrace(struct task_struct *child, long request,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 		    unsigned long addr, unsigned long data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	int ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	void __user *datap = (void __user *) data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	switch (request) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	case PTRACE_GETFPREGS: /* Get the child FPU state. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		ret = get_fpregs(datap, child);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	case PTRACE_SETFPREGS: /* Set the child FPU state. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 		ret = set_fpregs(datap, child);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	case PTRACE_ARCH_PRCTL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		/* XXX Calls ptrace on the host - needs some SMP thinking */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 		ret = arch_prctl(child, data, (void __user *) addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) }