Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) #include <linux/debugfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <asm/tlbflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <asm/mmu_context.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <asm/nospec-branch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <asm/cache.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <asm/apic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include "mm_internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #ifdef CONFIG_PARAVIRT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) # define STATIC_NOPV
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) # define STATIC_NOPV			static
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) # define __flush_tlb_local		native_flush_tlb_local
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) # define __flush_tlb_global		native_flush_tlb_global
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) # define __flush_tlb_others(msk, info)	native_flush_tlb_others(msk, info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  *	TLB flushing, formerly SMP-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  *		c/o Linus Torvalds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)  *	These mean you can really definitely utterly forget about
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  *	writing to user space from interrupts. (Its not allowed anyway).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)  *	More scalable flush, from Andi Kleen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45)  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46)  * stored in cpu_tlb_state.last_user_mm_ibpb.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #define LAST_USER_MM_IBPB	0x1UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)  * The x86 feature is called PCID (Process Context IDentifier). It is similar
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52)  * to what is traditionally called ASID on the RISC processors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54)  * We don't use the traditional ASID implementation, where each process/mm gets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55)  * its own ASID and flush/restart when we run out of ASID space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57)  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58)  * that came by on this CPU, allowing cheaper switch_mm between processes on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)  * this CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)  * We end up with different spaces for different things. To avoid confusion we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62)  * use different names for each of them:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)  *         the canonical identifier for an mm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67)  * kPCID - [1, TLB_NR_DYN_ASIDS]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68)  *         the value we write into the PCID part of CR3; corresponds to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69)  *         ASID+1, because PCID 0 is special.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72)  *         for KPTI each mm has two address spaces and thus needs two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73)  *         PCID values, but we can still do with a single ASID denomination
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74)  *         for each mm. Corresponds to kPCID + 2048.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) /* There are 12 bits of space for ASIDS in CR3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define CR3_HW_ASID_BITS		12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82)  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83)  * user/kernel switches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) #ifdef CONFIG_PAGE_TABLE_ISOLATION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) # define PTI_CONSUMED_PCID_BITS	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) # define PTI_CONSUMED_PCID_BITS	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94)  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95)  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96)  * use by non-PCID-aware users.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101)  * Given @asid, compute kPCID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) static inline u16 kern_pcid(u16 asid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #ifdef CONFIG_PAGE_TABLE_ISOLATION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 	 * Make sure that the dynamic ASID space does not confict with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 	 * bit we are using to switch between user and kernel ASIDs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	 * The ASID being passed in here should have respected the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 	 * The dynamically-assigned ASIDs that get passed in are small
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	 * so do not bother to clear it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	 * PCID bits.  This serves two purposes.  It prevents a nasty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 	 * situation in which PCID-unaware code saves CR3, loads some other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	 * value (with PCID == 0), and then restores CR3, thus corrupting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	 * that any bugs involving loading a PCID-enabled CR3 with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	 * CR4.PCIDE off will trigger deterministically.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	return asid + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137)  * Given @asid, compute uPCID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) static inline u16 user_pcid(u16 asid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	u16 ret = kern_pcid(asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) #ifdef CONFIG_PAGE_TABLE_ISOLATION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 	if (static_cpu_has(X86_FEATURE_PCID)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 		return __sme_pa(pgd) | kern_pcid(asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 		VM_WARN_ON_ONCE(asid != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 		return __sme_pa(pgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 	 * might be called during early boot. This should work even after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	 * boot because all CPU's the have same capabilities:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171)  * We get here when we do something requiring a TLB invalidation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172)  * but could not go invalidate all of the contexts.  We do the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173)  * necessary invalidation by clearing out the 'ctx_id' which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174)  * forces a TLB flush when the context is loaded.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) static void clear_asid_other(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	u16 asid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 	 * This is only expected to be set if we have disabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	 * kernel _PAGE_GLOBAL pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	if (!static_cpu_has(X86_FEATURE_PTI)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 		WARN_ON_ONCE(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 		/* Do not need to flush the current asid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 		 * Make sure the next time we go to switch to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 		 * this asid, we do a flush:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 			    u16 *new_asid, bool *need_flush)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	u16 asid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	if (!static_cpu_has(X86_FEATURE_PCID)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 		*new_asid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 		*need_flush = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 		clear_asid_other();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 		    next->context.ctx_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 		*new_asid = asid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 			       next_tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	 * We don't currently own an ASID slot on this CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	 * Allocate a slot.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 		*new_asid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 		this_cpu_write(cpu_tlbstate.next_asid, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	*need_flush = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243)  * Given an ASID, flush the corresponding user ASID.  We can delay this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244)  * until the next time we switch to it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246)  * See SWITCH_TO_USER_CR3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) static inline void invalidate_user_asid(u16 asid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	/* There is no user ASID if address space separation is off */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	 * We only have a single ASID if PCID is off and the CR3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 	 * write will have flushed it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	if (!static_cpu_has(X86_FEATURE_PTI))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	__set_bit(kern_pcid(asid),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	unsigned long new_mm_cr3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	if (need_flush) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 		invalidate_user_asid(new_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 		new_mm_cr3 = build_cr3(pgdir, new_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 	 * Caution: many callers of this function expect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	 * that load_cr3() is serializing and orders TLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	 * fills with respect to the mm_cpumask writes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	write_cr3(new_mm_cr3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) void leave_mm(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 	 * If so, our callers still expect us to flush the TLB, but there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 	 * aren't any user TLB entries in init_mm to worry about.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	 * This needs to happen before any other sanity checks due to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	 * intel_idle's shenanigans.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	if (loaded_mm == &init_mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	/* Warn if we're not lazy. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	switch_mm(NULL, &init_mm, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) EXPORT_SYMBOL_GPL(leave_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) void switch_mm(struct mm_struct *prev, struct mm_struct *next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	       struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	switch_mm_irqs_off(prev, next, tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	unsigned long next_tif = task_thread_info(next)->flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	return (unsigned long)next->mm | ibpb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) static void cond_ibpb(struct task_struct *next)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	if (!next || !next->mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	 * Both, the conditional and the always IBPB mode use the mm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	 * pointer to avoid the IBPB when switching between tasks of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	 * same process. Using the mm pointer instead of mm->context.ctx_id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	 * less impossible to control by an attacker. Aside of that it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	 * would only affect the first schedule so the theoretically
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	 * exposed data is not really interesting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 		unsigned long prev_mm, next_mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 		 * This is a bit more complex than the always mode because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 		 * it has to handle two cases:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 		 * 1) Switch from a user space task (potential attacker)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 		 *    which has TIF_SPEC_IB set to a user space task
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 		 *    (potential victim) which has TIF_SPEC_IB not set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 		 * 2) Switch from a user space task (potential attacker)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 		 *    which has TIF_SPEC_IB not set to a user space task
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 		 *    (potential victim) which has TIF_SPEC_IB set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 		 * This could be done by unconditionally issuing IBPB when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 		 * a task which has TIF_SPEC_IB set is either scheduled in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 		 * or out. Though that results in two flushes when:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 		 * - the same user space task is scheduled out and later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 		 *   scheduled in again and only a kernel thread ran in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 		 *   between.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 		 * - a user space task belonging to the same process is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 		 *   scheduled in after a kernel thread ran in between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		 * - a user space task belonging to the same process is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 		 *   scheduled in immediately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 		 * Optimize this with reasonably small overhead for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 		 * pointer of the incoming task which is stored in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 		next_mm = mm_mangle_tif_spec_ib(next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 		 * Issue IBPB only if the mm's are different and one or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 		 * both have the IBPB bit set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 		if (next_mm != prev_mm &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 			indirect_branch_prediction_barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 		 * Only flush when switching to a user space task with a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 		 * different context than the user space task which ran
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 		 * last on this CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 			indirect_branch_prediction_barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) #ifdef CONFIG_PERF_EVENTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) static inline void cr4_update_pce_mm(struct mm_struct *mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	     atomic_read(&mm->context.perf_rdpmc_allowed)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 		cr4_set_bits_irqsoff(X86_CR4_PCE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) void cr4_update_pce(void *ignored)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 			struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	unsigned cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	u64 next_tlb_gen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 	bool need_flush;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	u16 new_asid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	 * NB: The scheduler will call us with prev == next when switching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	 * When this happens, we don't assume that CR3 (and hence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	 * cpu_tlbstate.loaded_mm) matches next.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	/* We don't want flush_tlb_func_* to run concurrently with us. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 		WARN_ON_ONCE(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	 * Verify that CR3 is what we think it is.  This will catch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	 * hypothetical buggy code that directly switches to swapper_pg_dir
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	 * without going through leave_mm() / switch_mm_irqs_off() or that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	 * does something like write_cr3(read_cr3_pa()).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	 * isn't free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) #ifdef CONFIG_DEBUG_VM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 		 * If we were to BUG here, we'd be very likely to kill
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 		 * the system so hard that we don't see the call trace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 		 * Try to recover instead by ignoring the error and doing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 		 * a global flush to minimize the chance of corruption.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 		 * (This is far from being a fully correct recovery.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 		 *  Architecturally, the CPU could prefetch something
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 		 *  back into an incorrect ASID slot and leave it there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 		 *  to cause trouble down the road.  It's better than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 		 *  nothing, though.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 		__flush_tlb_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	this_cpu_write(cpu_tlbstate.is_lazy, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	 * The membarrier system call requires a full memory barrier and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	 * core serialization before returning to user-space, after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 	 * storing to rq->curr, when changing mm.  This is because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	 * membarrier() sends IPIs to all CPUs that are in the target mm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 	 * to make them issue memory barriers.  However, if another CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	 * switches to/from the target mm concurrently with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	 * membarrier(), it can cause that CPU not to receive an IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	 * when it really should issue a memory barrier.  Writing to CR3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	 * provides that full memory barrier and core serializing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	 * instruction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 	if (real_prev == next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 			   next->context.ctx_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 		 * Even in lazy TLB mode, the CPU should stay set in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 		 * mm_cpumask. The TLB shootdown code can figure out from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		if (WARN_ON_ONCE(real_prev != &init_mm &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 			cpumask_set_cpu(cpu, mm_cpumask(next));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 		 * If the CPU is not in lazy TLB mode, we are just switching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 		 * from one thread in a process to another thread in the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 		 * process. No TLB flush required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 		if (!was_lazy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 		 * Read the tlb_gen to check whether a flush is needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 		 * If the TLB is up to date, just use it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 		 * The barrier synchronizes with the tlb_gen increment in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 		 * the TLB shootdown code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 		smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 				next_tlb_gen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 		 * TLB contents went out of date while we were in lazy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 		 * mode. Fall through to the TLB switching code below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 		new_asid = prev_asid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 		need_flush = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		 * Avoid user/user BTB poisoning by flushing the branch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 		 * predictor when switching between processes. This stops
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 		 * one process from doing Spectre-v2 attacks on another.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 		cond_ibpb(tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 		 * Stop remote flushes for the previous mm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 		 * but the bitmap manipulation can cause cache line contention.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 		if (real_prev != &init_mm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 						mm_cpumask(real_prev)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 		 * Start remote flushes and then read tlb_gen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 		if (next != &init_mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 			cpumask_set_cpu(cpu, mm_cpumask(next));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 		barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	if (need_flush) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 		load_new_mm_cr3(next->pgd, new_asid, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 		/* The new ASID is already up to date. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 		load_new_mm_cr3(next->pgd, new_asid, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	/* Make sure we write CR3 before loaded_mm. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 	if (next != real_prev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 		cr4_update_pce_mm(next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 		switch_ldt(real_prev, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584)  * Please ignore the name of this function.  It should be called
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585)  * switch_to_kernel_thread().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587)  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588)  * kernel thread or other context without an mm.  Acceptable implementations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589)  * include doing nothing whatsoever, switching to init_mm, or various clever
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590)  * lazy tricks to try to minimize TLB flushes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592)  * The scheduler reserves the right to call enter_lazy_tlb() several times
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593)  * in a row.  It will notify us that we're going back to a real mm by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594)  * calling switch_mm_irqs_off().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 	this_cpu_write(cpu_tlbstate.is_lazy, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605)  * Call this when reinitializing a CPU.  It fixes the following potential
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606)  * problems:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608)  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609)  *   because the CPU was taken down and came back up with CR3's PCID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610)  *   bits clear.  CPU hotplug can do this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612)  * - The TLB contains junk in slots corresponding to inactive ASIDs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614)  * - The CPU went so far out to lunch that it may have missed a TLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615)  *   flush.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) void initialize_tlbstate_and_flush(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	unsigned long cr3 = __read_cr3();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 	/* Assert that CR3 already references the right mm. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 	 * doesn't work like other CR4 bits because it can only be set from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	 * long mode.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 		!(cr4_read_shadow() & X86_CR4_PCIDE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	/* Force ASID 0 and force a TLB flush. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	write_cr3(build_cr3(mm->pgd, 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	/* Reinitialize tlbstate. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	this_cpu_write(cpu_tlbstate.next_asid, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650)  * flush_tlb_func_common()'s memory ordering requirement is that any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651)  * TLB fills that happen after we flush the TLB are ordered after we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652)  * read active_mm's tlb_gen.  We don't need any explicit barriers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653)  * because all x86 flush operations are serializing and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654)  * atomic64_read operation won't be reordered by the compiler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) static void flush_tlb_func_common(const struct flush_tlb_info *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 				  bool local, enum tlb_flush_reason reason)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	 * We have three different tlb_gen values in here.  They are:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	 * - mm_tlb_gen:     the latest generation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	 * - local_tlb_gen:  the generation that this CPU has already caught
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	 *                   up to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	 * - f->new_tlb_gen: the generation that the requester of the flush
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	 *                   wants us to catch up to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	/* This code cannot presently handle being reentered. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	VM_WARN_ON(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	if (unlikely(loaded_mm == &init_mm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		   loaded_mm->context.ctx_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 		 * We're in lazy mode.  We need to at least flush our
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		 * paging-structure cache to avoid speculatively reading
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 		 * garbage into our TLB.  Since switching to init_mm is barely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 		 * slower than a minimal flush, just switch to init_mm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 		 * This should be rare, with native_flush_tlb_others skipping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 		 * IPIs to lazy TLB mode CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 		switch_mm_irqs_off(NULL, &init_mm, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 		 * There's nothing to do: we're already up to date.  This can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 		 * happen if two concurrent flushes happen -- the first flush to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 		 * be handled can catch us all the way up, leaving no work for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 		 * the second flush.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		trace_tlb_flush(reason, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	 * If we get to this point, we know that our TLB is out of date.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	 * This does not strictly imply that we need to flush (it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	 * going to need to flush in the very near future, so we might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	 * as well get it over with.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	 * The only question is whether to do a full or partial flush.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	 * We do a partial flush if requested and two extra conditions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	 * are met:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	 *    we've always done all needed flushes to catch up to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	 *    us up to date for tlb_gen 3 is the partial flush we're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	 *    processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	 *    As an example of why this check is needed, suppose that there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	 *    are two concurrent flushes.  The first is a full flush that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	 *    processed on this CPU in reverse order, we'll see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	 *    1 without the full flush that's needed for tlb_gen 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	 *    Partial TLB flushes are not all that much cheaper than full TLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	 *    flushes, so it seems unlikely that it would be a performance win
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	 *    to do a partial flush if that won't bring our TLB fully up to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	 *    date.  By doing a full flush instead, we can increase
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	 *    avoid another flush in the very near future.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	if (f->end != TLB_FLUSH_ALL &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	    f->new_tlb_gen == local_tlb_gen + 1 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	    f->new_tlb_gen == mm_tlb_gen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 		/* Partial flush */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 		unsigned long addr = f->start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 		while (addr < f->end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 			flush_tlb_one_user(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 			addr += 1UL << f->stride_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 		if (local)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 		trace_tlb_flush(reason, nr_invalidate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 		/* Full flush. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 		flush_tlb_local();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 		if (local)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	/* Both paths above update our state to mm_tlb_gen. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	const struct flush_tlb_info *f = info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	flush_tlb_func_common(f, true, reason);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) static void flush_tlb_func_remote(void *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	const struct flush_tlb_info *f = info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	inc_irq_stat(irq_tlb_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) static bool tlb_is_not_lazy(int cpu, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 					 const struct flush_tlb_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	if (info->end == TLB_FLUSH_ALL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 				(info->end - info->start) >> PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	 * If no page tables were freed, we can skip sending IPIs to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	 * at the next context switch.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	 * However, if page tables are getting freed, we need to send the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	 * up on the new contents of what used to be page tables, while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	 * doing a speculative memory access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	if (info->freed_tables)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		smp_call_function_many(cpumask, flush_tlb_func_remote,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 			       (void *)info, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 				(void *)info, 1, cpumask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) void flush_tlb_others(const struct cpumask *cpumask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 		      const struct flush_tlb_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	__flush_tlb_others(cpumask, info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833)  * See Documentation/x86/tlb.rst for details.  We choose 33
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834)  * because it is large enough to cover the vast majority (at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835)  * least 95%) of allocations, and is small enough that we are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836)  * confident it will not cause too much overhead.  Each single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837)  * flush is about 100 ns, so this caps the maximum overhead at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838)  * _about_ 3,000 ns.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840)  * This is in units of pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) #ifdef CONFIG_DEBUG_VM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 			unsigned long start, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 			unsigned int stride_shift, bool freed_tables,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 			u64 new_tlb_gen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) #ifdef CONFIG_DEBUG_VM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	 * Ensure that the following code is non-reentrant and flush_tlb_info
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	 * is not overwritten. This means no TLB flushing is initiated by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	 * interrupt handlers and machine-check exception handlers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	info->start		= start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	info->end		= end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	info->mm		= mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	info->stride_shift	= stride_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	info->freed_tables	= freed_tables;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	info->new_tlb_gen	= new_tlb_gen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	return info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) static inline void put_flush_tlb_info(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) #ifdef CONFIG_DEBUG_VM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	/* Complete reentrency prevention checks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	this_cpu_dec(flush_tlb_info_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 				unsigned long end, unsigned int stride_shift,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 				bool freed_tables)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	struct flush_tlb_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	u64 new_tlb_gen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	cpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 	/* Should we flush just the requested range? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 	if ((end == TLB_FLUSH_ALL) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 		start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 		end = TLB_FLUSH_ALL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	/* This is also a barrier that synchronizes with switch_mm(). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	new_tlb_gen = inc_mm_tlb_gen(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 				  new_tlb_gen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 		lockdep_assert_irqs_enabled();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 		local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 		flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 		local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 		flush_tlb_others(mm_cpumask(mm), info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	put_flush_tlb_info();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) static void do_flush_tlb_all(void *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 	__flush_tlb_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) void flush_tlb_all(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	on_each_cpu(do_flush_tlb_all, NULL, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) static void do_kernel_range_flush(void *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	struct flush_tlb_info *f = info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	/* flush range by one by one 'invlpg' */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 		flush_tlb_one_kernel(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) void flush_tlb_kernel_range(unsigned long start, unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	/* Balance as user space task's flush, a bit conservative */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	if (end == TLB_FLUSH_ALL ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		on_each_cpu(do_flush_tlb_all, NULL, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 		struct flush_tlb_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 		preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 		on_each_cpu(do_kernel_range_flush, info, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 		put_flush_tlb_info();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965)  * This can be used from process context to figure out what the value of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966)  * CR3 is without needing to do a (slow) __read_cr3().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968)  * It's intended to be used for code like KVM that sneakily changes CR3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969)  * and needs to restore it.  It needs to be used very carefully.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) unsigned long __get_current_cr3_fast(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	/* For now, be very restrictive about when this can be called. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	VM_WARN_ON(in_nmi() || preemptible());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	VM_BUG_ON(cr3 != __read_cr3());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	return cr3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985)  * Flush one page in the kernel mapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) void flush_tlb_one_kernel(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	 * use PCID if we also use global PTEs for the kernel mapping, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	 * INVLPG flushes global translations across all address spaces.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	 * __flush_tlb_one_user() will flush the given address for the current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	 * kernel address space and for its usermode counterpart, but it does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	 * not flush it for other address spaces.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	flush_tlb_one_user(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	if (!static_cpu_has(X86_FEATURE_PTI))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	 * See above.  We need to propagate the flush to all other address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 	 * spaces.  In principle, we only need to propagate it to kernelmode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	 * address spaces, but the extra bookkeeping we would need is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	 * worth it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)  * Flush one page in the user mapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	if (!static_cpu_has(X86_FEATURE_PTI))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	 * Just use invalidate_user_asid() in case we are called early.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 		invalidate_user_asid(loaded_mm_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) void flush_tlb_one_user(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 	__flush_tlb_one_user(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044)  * Flush everything
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) STATIC_NOPV void native_flush_tlb_global(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	unsigned long cr4, flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 		 * Using INVPCID is considerably faster than a pair of writes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 		 * to CR4 sandwiched inside an IRQ flag save/restore.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 		 * Note, this works with CR4.PCIDE=0 or 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 		invpcid_flush_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	 * Read-modify-write to CR4 - protect it from preemption and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	 * from interrupts. (Use the raw variant because this code can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	 * be called from deep inside debugging code.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	raw_local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	/* toggle PGE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 	native_write_cr4(cr4 ^ X86_CR4_PGE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	/* write old PGE again and flush TLBs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	native_write_cr4(cr4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	raw_local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078)  * Flush the entire current user mapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) STATIC_NOPV void native_flush_tlb_local(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	 * Preemption or interrupts must be disabled to protect the access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	 * to the per CPU variable and to prevent being preempted between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	 * read_cr3() and write_cr3().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	WARN_ON_ONCE(preemptible());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	native_write_cr3(__native_read_cr3());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) void flush_tlb_local(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	__flush_tlb_local();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101)  * Flush everything
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) void __flush_tlb_all(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	 * This is to catch users with enabled preemption and the PGE feature
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	 * and don't trigger the warning in __native_flush_tlb().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	VM_WARN_ON_ONCE(preemptible());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	if (boot_cpu_has(X86_FEATURE_PGE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 		__flush_tlb_global();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 		flush_tlb_local();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) EXPORT_SYMBOL_GPL(__flush_tlb_all);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123)  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124)  * This means that the 'struct flush_tlb_info' that describes which mappings to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125)  * flush is actually fixed. We therefore set a single fixed struct and use it in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126)  * arch_tlbbatch_flush().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) static const struct flush_tlb_info full_flush_tlb_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	.mm = NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	.start = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 	.end = TLB_FLUSH_ALL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	int cpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 		lockdep_assert_irqs_enabled();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 		local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 		flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 		local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 		flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 	cpumask_clear(&batch->cpumask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154)  * Blindly accessing user memory from NMI context can be dangerous
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155)  * if we're in the middle of switching the current user task or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)  * switching the loaded mm.  It can also be dangerous if we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157)  * interrupted some kernel code that was temporarily using a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158)  * different mm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) bool nmi_uaccess_okay(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	struct mm_struct *current_mm = current->mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 	VM_WARN_ON_ONCE(!loaded_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	 * The condition we want to check is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	 * is supposed to be reasonably fast.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	 * Instead, we check the almost equivalent but somewhat conservative
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	if (loaded_mm != current_mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 			     size_t count, loff_t *ppos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	char buf[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	unsigned int len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) static ssize_t tlbflush_write_file(struct file *file,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 		 const char __user *user_buf, size_t count, loff_t *ppos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	char buf[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	ssize_t len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	int ceiling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	len = min(count, sizeof(buf) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	if (copy_from_user(buf, user_buf, len))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	buf[len] = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	if (kstrtoint(buf, 0, &ceiling))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	if (ceiling < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	tlb_single_page_flush_ceiling = ceiling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) static const struct file_operations fops_tlbflush = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	.read = tlbflush_read_file,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	.write = tlbflush_write_file,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	.llseek = default_llseek,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) static int __init create_tlb_single_page_flush_ceiling(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 			    arch_debugfs_dir, NULL, &fops_tlbflush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) late_initcall(create_tlb_single_page_flush_ceiling);