Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*---------------------------------------------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  |  poly_tan.c                                                               |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  |                                                                           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  | Compute the tan of a FPU_REG, using a polynomial approximation.           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  |                                                                           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  | Copyright (C) 1992,1993,1994,1997,1999                                    |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  |                       Australia.  E-mail   billm@melbpc.org.au            |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  |                                                                           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  |                                                                           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  +---------------------------------------------------------------------------*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include "exception.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include "reg_constant.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include "fpu_emu.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include "fpu_system.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include "control_w.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include "poly.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define	HiPOWERop	3	/* odd poly, positive terms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) static const unsigned long long oddplterm[HiPOWERop] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 	0x0000000000000000LL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	0x0051a1cf08fca228LL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 	0x0000000071284ff7LL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define	HiPOWERon	2	/* odd poly, negative terms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) static const unsigned long long oddnegterm[HiPOWERon] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 	0x1291a9a184244e80LL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 	0x0000583245819c21LL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define	HiPOWERep	2	/* even poly, positive terms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) static const unsigned long long evenplterm[HiPOWERep] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	0x0e848884b539e888LL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	0x00003c7f18b887daLL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define	HiPOWERen	2	/* even poly, negative terms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) static const unsigned long long evennegterm[HiPOWERen] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	0xf1f0200fd51569ccLL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	0x003afb46105c4432LL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) /*--- poly_tan() ------------------------------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  |                                                                           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  +---------------------------------------------------------------------------*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) void poly_tan(FPU_REG *st0_ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	long int exponent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	int invert;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	    argSignif, fix_up;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	unsigned long adj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	exponent = exponent(st0_ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #ifdef PARANOID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	if (signnegative(st0_ptr)) {	/* Can't hack a number < 0.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 		arith_invalid(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	}			/* Need a positive number */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) #endif /* PARANOID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	/* Split the problem into two domains, smaller and larger than pi/4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	if ((exponent == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	    || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 		/* The argument is greater than (approx) pi/4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 		invert = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 		accum.lsw = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 		XSIG_LL(accum) = significand(st0_ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 		if (exponent == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 			/* The argument is >= 1.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 			/* Put the binary point at the left. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 			XSIG_LL(accum) <<= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 		XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 		/* This is a special case which arises due to rounding. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 			FPU_settag0(TAG_Valid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 			significand(st0_ptr) = 0x8a51e04daabda360LL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 			setexponent16(st0_ptr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 				      (0x41 + EXTENDED_Ebias) | SIGN_Negative);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 		argSignif.lsw = accum.lsw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		XSIG_LL(argSignif) = XSIG_LL(accum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 		exponent = -1 + norm_Xsig(&argSignif);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		invert = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		argSignif.lsw = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		if (exponent < -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 			/* shift the argument right by the required places */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 			if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 			    0x80000000U)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 				XSIG_LL(accum)++;	/* round up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	XSIG_LL(argSq) = XSIG_LL(accum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	argSq.lsw = accum.lsw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	mul_Xsig_Xsig(&argSq, &argSq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	XSIG_LL(argSqSq) = XSIG_LL(argSq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	argSqSq.lsw = argSq.lsw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	mul_Xsig_Xsig(&argSqSq, &argSqSq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	/* Compute the negative terms for the numerator polynomial */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 			HiPOWERon - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	mul_Xsig_Xsig(&accumulatoro, &argSq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	negate_Xsig(&accumulatoro);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	/* Add the positive terms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 			HiPOWERop - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	/* Compute the positive terms for the denominator polynomial */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 			HiPOWERep - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	mul_Xsig_Xsig(&accumulatore, &argSq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	negate_Xsig(&accumulatore);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	/* Add the negative terms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 			HiPOWERen - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	/* Multiply by arg^2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	/* de-normalize and divide by 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	negate_Xsig(&accumulatore);	/* This does 1 - accumulator */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	/* Now find the ratio. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	if (accumulatore.msw == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 		/* accumulatoro must contain 1.0 here, (actually, 0) but it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		   really doesn't matter what value we use because it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		   have negligible effect in later calculations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		XSIG_LL(accum) = 0x8000000000000000LL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		accum.lsw = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		div_Xsig(&accumulatoro, &accumulatore, &accum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	/* Multiply by 1/3 * arg^3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	mul64_Xsig(&accum, &XSIG_LL(argSignif));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	mul64_Xsig(&accum, &XSIG_LL(argSignif));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	mul64_Xsig(&accum, &XSIG_LL(argSignif));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	mul64_Xsig(&accum, &twothirds);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	shr_Xsig(&accum, -2 * (exponent + 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	/* tan(arg) = arg + accum */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	add_two_Xsig(&accum, &argSignif, &exponent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	if (invert) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		/* We now have the value of tan(pi_2 - arg) where pi_2 is an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		   approximation for pi/2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 		/* The next step is to fix the answer to compensate for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		   error due to the approximation used for pi/2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		/* This is (approx) delta, the error in our approx for pi/2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		   (see above). It has an exponent of -65
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 		XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		fix_up.lsw = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		if (exponent == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 			adj = 0xffffffff;	/* We want approx 1.0 here, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 						   this is close enough. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		else if (exponent > -30) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 			adj = accum.msw >> -(exponent + 1);	/* tan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 			adj = mul_32_32(adj, adj);	/* tan^2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 			adj = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		adj = mul_32_32(0x898cc517, adj);	/* delta * tan^2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		fix_up.msw += adj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 		if (!(fix_up.msw & 0x80000000)) {	/* did fix_up overflow ? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 			/* Yes, we need to add an msb */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 			shr_Xsig(&fix_up, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 			fix_up.msw |= 0x80000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 			shr_Xsig(&fix_up, 64 + exponent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 			shr_Xsig(&fix_up, 65 + exponent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		add_two_Xsig(&accum, &fix_up, &exponent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		/* accum now contains tan(pi/2 - arg).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		   Use tan(arg) = 1.0 / tan(pi/2 - arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 		accumulatoro.lsw = accumulatoro.midw = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 		accumulatoro.msw = 0x80000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		div_Xsig(&accumulatoro, &accum, &accum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		exponent = -exponent - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	/* Transfer the result */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	round_Xsig(&accum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	FPU_settag0(TAG_Valid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	significand(st0_ptr) = XSIG_LL(accum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	setexponent16(st0_ptr, exponent + EXTENDED_Ebias);	/* Result is positive. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }