Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) #ifndef __KVM_X86_MMU_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) #define __KVM_X86_MMU_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) #include <linux/kvm_host.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include "kvm_cache_regs.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include "cpuid.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #define PT64_PT_BITS 9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #define PT32_PT_BITS 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #define PT_WRITABLE_SHIFT 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #define PT_USER_SHIFT 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #define PT_PRESENT_MASK (1ULL << 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define PT_PWT_MASK (1ULL << 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define PT_PCD_MASK (1ULL << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define PT_ACCESSED_SHIFT 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define PT_DIRTY_SHIFT 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define PT_PAGE_SIZE_SHIFT 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define PT_PAT_MASK (1ULL << 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define PT_GLOBAL_MASK (1ULL << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define PT64_NX_SHIFT 63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define PT_PAT_SHIFT 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define PT_DIR_PAT_SHIFT 12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define PT32_DIR_PSE36_SIZE 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define PT32_DIR_PSE36_SHIFT 13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define PT32_DIR_PSE36_MASK \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define PT64_ROOT_5LEVEL 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define PT64_ROOT_4LEVEL 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define PT32_ROOT_LEVEL 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define PT32E_ROOT_LEVEL 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) static inline u64 rsvd_bits(int s, int e)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	if (e < s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	return ((2ULL << (e - s)) - 1) << s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 			     gpa_t nested_cr3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 			     bool accessed_dirty, gpa_t new_eptp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 				u64 fault_address, char *insn, int insn_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	return kvm_mmu_load(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	       ? cr3 & X86_CR3_PCID_MASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	       : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	u64 root_hpa = vcpu->arch.mmu->root_hpa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	if (!VALID_PAGE(root_hpa))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	kvm_x86_ops.load_mmu_pgd(vcpu, root_hpa | kvm_get_active_pcid(vcpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 				 vcpu->arch.mmu->shadow_root_level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 		       bool prefault);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 					u32 err, bool prefault)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #ifdef CONFIG_RETPOLINE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)  * Currently, we have two sorts of write-protection, a) the first one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)  * write-protects guest page to sync the guest modification, b) another one is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)  * between these two sorts are:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)  * 1) the first case clears SPTE_MMU_WRITEABLE bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  * 2) the first case requires flushing tlb immediately avoiding corrupting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)  *    shadow page table between all vcpus so it should be in the protection of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)  *    mmu-lock. And the another case does not need to flush tlb until returning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)  *    the dirty bitmap to userspace since it only write-protects the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)  *    logged in the bitmap, that means the page in the dirty bitmap is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)  *    missed, so it can flush tlb out of mmu-lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)  * So, there is the problem: the first case can meet the corrupted tlb caused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)  * by another case which write-protects pages but without flush tlb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)  * immediately. In order to making the first case be aware this problem we let
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)  * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)  * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)  * Anyway, whenever a spte is updated (only permission and status bits are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)  * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)  * readonly, if that happens, we need to flush tlb. Fortunately,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)  * mmu_spte_update() has already handled it perfectly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)  * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)  * - if we want to see if it has writable tlb entry or if the spte can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)  *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)  *   case, otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)  * - if we fix page fault on the spte or do write-protection by dirty logging,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)  *   check PT_WRITABLE_MASK.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)  * TODO: introduce APIs to split these two cases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) static inline int is_writable_pte(unsigned long pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	return pte & PT_WRITABLE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) static inline bool is_write_protection(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)  * Check if a given access (described through the I/D, W/R and U/S bits of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)  * page fault error code pfec) causes a permission fault with the given PTE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)  * access rights (in ACC_* format).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)  * Return zero if the access does not fault; return the page fault error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)  * if the access faults.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 				  unsigned pte_access, unsigned pte_pkey,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 				  unsigned pfec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	int cpl = kvm_x86_ops.get_cpl(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	 * (these are implicit supervisor accesses) regardless of the value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	 * of EFLAGS.AC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	 * the result in X86_EFLAGS_AC. We then insert it in place of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	 * but it will be one in index if SMAP checks are being overridden.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 * It is important to keep this branchless.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	int index = (pfec >> 1) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	bool fault = (mmu->permissions[index] >> pte_access) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	u32 errcode = PFERR_PRESENT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	if (unlikely(mmu->pkru_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		u32 pkru_bits, offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		* PKRU defines 32 bits, there are 16 domains and 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		* attribute bits per domain in pkru.  pte_pkey is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		* index of the protection domain, so pte_pkey * 2 is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		* is the index of the first bit for the domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 		*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 		offset = (pfec & ~1) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		pkru_bits &= mmu->pkru_mask >> offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		errcode |= -pkru_bits & PFERR_PK_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		fault |= (pkru_bits != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	return -(u32)fault & errcode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) int kvm_mmu_post_init_vm(struct kvm *kvm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) #endif