Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * 8253/8254 interval timer emulation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Copyright (c) 2003-2004 Fabrice Bellard
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (c) 2006 Intel Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (c) 2007 Keir Fraser, XenSource Inc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Copyright (c) 2008 Intel Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Permission is hereby granted, free of charge, to any person obtaining a copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * of this software and associated documentation files (the "Software"), to deal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * in the Software without restriction, including without limitation the rights
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * copies of the Software, and to permit persons to whom the Software is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * furnished to do so, subject to the following conditions:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * The above copyright notice and this permission notice shall be included in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * all copies or substantial portions of the Software.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * THE SOFTWARE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  * Authors:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  *   Sheng Yang <sheng.yang@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  *   Based on QEMU and Xen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define pr_fmt(fmt) "pit: " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #include <linux/kvm_host.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #include "ioapic.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #include "irq.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #include "i8254.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #include "x86.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #ifndef CONFIG_X86_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define mod_64(x, y) ((x) % (y))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define RW_STATE_LSB 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define RW_STATE_MSB 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define RW_STATE_WORD0 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define RW_STATE_WORD1 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	switch (c->mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 		/* XXX: just disable/enable counting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 		/* Restart counting on rising edge. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 		if (c->gate < val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 			c->count_load_time = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	c->gate = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) static int pit_get_gate(struct kvm_pit *pit, int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	return pit->pit_state.channels[channel].gate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) static s64 __kpit_elapsed(struct kvm_pit *pit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	s64 elapsed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	ktime_t remaining;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	struct kvm_kpit_state *ps = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	if (!ps->period)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	 * The Counter does not stop when it reaches zero. In
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	 * the highest count, either FFFF hex for binary counting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	 * or 9999 for BCD counting, and continues counting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	 * Modes 2 and 3 are periodic; the Counter reloads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	 * itself with the initial count and continues counting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	 * from there.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	remaining = hrtimer_get_remaining(&ps->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	elapsed = ps->period - ktime_to_ns(remaining);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	return elapsed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 			int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	if (channel == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		return __kpit_elapsed(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) static int pit_get_count(struct kvm_pit *pit, int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	s64 d, t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	int counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	t = kpit_elapsed(pit, c, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	switch (c->mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		counter = (c->count - d) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		/* XXX: may be incorrect for odd counts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		counter = c->count - (mod_64((2 * d), c->count));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		counter = c->count - mod_64(d, c->count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	return counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static int pit_get_out(struct kvm_pit *pit, int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	s64 d, t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	int out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	t = kpit_elapsed(pit, c, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	switch (c->mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		out = (d >= c->count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 		out = (d < c->count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 		out = ((mod_64(d, c->count) == 0) && (d != 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 		out = (d == c->count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	return out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) static void pit_latch_count(struct kvm_pit *pit, int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	if (!c->count_latched) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 		c->latched_count = pit_get_count(pit, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		c->count_latched = c->rw_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) static void pit_latch_status(struct kvm_pit *pit, int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	if (!c->status_latched) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		/* TODO: Return NULL COUNT (bit 6). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		c->status = ((pit_get_out(pit, channel) << 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 				(c->rw_mode << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 				(c->mode << 1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 				c->bcd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		c->status_latched = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	return container_of(ps, struct kvm_pit, pit_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 						 irq_ack_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	struct kvm_pit *pit = pit_state_to_pit(ps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	atomic_set(&ps->irq_ack, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	/* irq_ack should be set before pending is read.  Order accesses with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	if (atomic_dec_if_positive(&ps->pending) > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		kthread_queue_work(pit->worker, &pit->expired);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	struct hrtimer *timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	if (!kvm_vcpu_is_bsp(vcpu) || !pit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	timer = &pit->pit_state.timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	mutex_lock(&pit->pit_state.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	if (hrtimer_cancel(timer))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	mutex_unlock(&pit->pit_state.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) static void destroy_pit_timer(struct kvm_pit *pit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	hrtimer_cancel(&pit->pit_state.timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	kthread_flush_work(&pit->expired);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) static void pit_do_work(struct kthread_work *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	struct kvm *kvm = pit->kvm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	struct kvm_vcpu *vcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	struct kvm_kpit_state *ps = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	 * Provides NMI watchdog support via Virtual Wire mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	 * The route is: PIT -> LVT0 in NMI mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	 * Note: Our Virtual Wire implementation does not follow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	 * the MP specification.  We propagate a PIT interrupt to all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	 * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	 * also be simultaneously delivered through PIC and IOAPIC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 		kvm_for_each_vcpu(i, vcpu, kvm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 			kvm_apic_nmi_wd_deliver(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	struct kvm_pit *pt = pit_state_to_pit(ps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	if (atomic_read(&ps->reinject))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 		atomic_inc(&ps->pending);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	kthread_queue_work(pt->worker, &pt->expired);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	if (ps->is_periodic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		hrtimer_add_expires_ns(&ps->timer, ps->period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 		return HRTIMER_RESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		return HRTIMER_NORESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	atomic_set(&pit->pit_state.pending, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	atomic_set(&pit->pit_state.irq_ack, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	struct kvm_kpit_state *ps = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	struct kvm *kvm = pit->kvm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	if (atomic_read(&ps->reinject) == reinject)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	 * AMD SVM AVIC accelerates EOI write and does not trap.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	 * This cause in-kernel PIT re-inject mode to fail
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	 * since it checks ps->irq_ack before kvm_set_irq()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	 * and relies on the ack notifier to timely queue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	 * the pt->worker work iterm and reinject the missed tick.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	 * So, deactivate APICv when PIT is in reinject mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	if (reinject) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 		kvm_request_apicv_update(kvm, false,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 					 APICV_INHIBIT_REASON_PIT_REINJ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		/* The initial state is preserved while ps->reinject == 0. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 		kvm_pit_reset_reinject(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 		kvm_request_apicv_update(kvm, true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 					 APICV_INHIBIT_REASON_PIT_REINJ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 		kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 		kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	atomic_set(&ps->reinject, reinject);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	struct kvm_kpit_state *ps = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	struct kvm *kvm = pit->kvm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	s64 interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	if (!ioapic_in_kernel(kvm) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	    ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	pr_debug("create pit timer, interval is %llu nsec\n", interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	/* TODO The new value only affected after the retriggered */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	hrtimer_cancel(&ps->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	kthread_flush_work(&pit->expired);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	ps->period = interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	ps->is_periodic = is_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	kvm_pit_reset_reinject(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	 * Do not allow the guest to program periodic timers with small
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	 * interval, since the hrtimers are not throttled by the host
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	 * scheduler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	if (ps->is_periodic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 		s64 min_period = min_timer_period_us * 1000LL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 		if (ps->period < min_period) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 			pr_info_ratelimited(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 			    "kvm: requested %lld ns "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 			    "i8254 timer period limited to %lld ns\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 			    ps->period, min_period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 			ps->period = min_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 		      HRTIMER_MODE_ABS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	struct kvm_kpit_state *ps = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	pr_debug("load_count val is %u, channel is %d\n", val, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	 * The largest possible initial count is 0; this is equivalent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	 * to 216 for binary counting and 104 for BCD counting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	if (val == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 		val = 0x10000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	ps->channels[channel].count = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	if (channel != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 		ps->channels[channel].count_load_time = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	/* Two types of timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	switch (ps->channels[0].mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391)         /* FIXME: enhance mode 4 precision */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 		create_pit_timer(pit, val, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		create_pit_timer(pit, val, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		destroy_pit_timer(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		int hpet_legacy_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	u8 saved_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	if (hpet_legacy_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 		/* save existing mode for later reenablement */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 		WARN_ON(channel != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		saved_mode = pit->pit_state.channels[0].mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 		pit->pit_state.channels[0].mode = 0xff; /* disable timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 		pit_load_count(pit, channel, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 		pit->pit_state.channels[0].mode = saved_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 		pit_load_count(pit, channel, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	return container_of(dev, struct kvm_pit, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	return container_of(dev, struct kvm_pit, speaker_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) static inline int pit_in_range(gpa_t addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) static int pit_ioport_write(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 				struct kvm_io_device *this,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 			    gpa_t addr, int len, const void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	struct kvm_pit *pit = dev_to_pit(this);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	struct kvm_kpit_state *pit_state = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	int channel, access;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	struct kvm_kpit_channel_state *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	u32 val = *(u32 *) data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	if (!pit_in_range(addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 		return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	val  &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	addr &= KVM_PIT_CHANNEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	mutex_lock(&pit_state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	if (val != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 			 (unsigned int)addr, len, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	if (addr == 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		channel = val >> 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 		if (channel == 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 			/* Read-Back Command. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 			for (channel = 0; channel < 3; channel++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 				if (val & (2 << channel)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 					if (!(val & 0x20))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 						pit_latch_count(pit, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 					if (!(val & 0x10))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 						pit_latch_status(pit, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 			/* Select Counter <channel>. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 			s = &pit_state->channels[channel];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 			if (access == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 				pit_latch_count(pit, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 				s->rw_mode = access;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 				s->read_state = access;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 				s->write_state = access;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 				s->mode = (val >> 1) & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 				if (s->mode > 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 					s->mode -= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 				s->bcd = val & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 		/* Write Count. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 		s = &pit_state->channels[addr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 		switch (s->write_state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 		case RW_STATE_LSB:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 			pit_load_count(pit, addr, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 		case RW_STATE_MSB:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 			pit_load_count(pit, addr, val << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 		case RW_STATE_WORD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 			s->write_latch = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 			s->write_state = RW_STATE_WORD1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 		case RW_STATE_WORD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 			pit_load_count(pit, addr, s->write_latch | (val << 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 			s->write_state = RW_STATE_WORD0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	mutex_unlock(&pit_state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) static int pit_ioport_read(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 			   struct kvm_io_device *this,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 			   gpa_t addr, int len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	struct kvm_pit *pit = dev_to_pit(this);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	struct kvm_kpit_state *pit_state = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	int ret, count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	struct kvm_kpit_channel_state *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	if (!pit_in_range(addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 		return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	addr &= KVM_PIT_CHANNEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	if (addr == 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	s = &pit_state->channels[addr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	mutex_lock(&pit_state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	if (s->status_latched) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 		s->status_latched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 		ret = s->status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	} else if (s->count_latched) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 		switch (s->count_latched) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 		case RW_STATE_LSB:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 			ret = s->latched_count & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 			s->count_latched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 		case RW_STATE_MSB:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 			ret = s->latched_count >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 			s->count_latched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 		case RW_STATE_WORD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 			ret = s->latched_count & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 			s->count_latched = RW_STATE_MSB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 		switch (s->read_state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 		case RW_STATE_LSB:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 			count = pit_get_count(pit, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 			ret = count & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 		case RW_STATE_MSB:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 			count = pit_get_count(pit, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 			ret = (count >> 8) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 		case RW_STATE_WORD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 			count = pit_get_count(pit, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 			ret = count & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 			s->read_state = RW_STATE_WORD1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		case RW_STATE_WORD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 			count = pit_get_count(pit, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 			ret = (count >> 8) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 			s->read_state = RW_STATE_WORD0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	if (len > sizeof(ret))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		len = sizeof(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	memcpy(data, (char *)&ret, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	mutex_unlock(&pit_state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) static int speaker_ioport_write(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 				struct kvm_io_device *this,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 				gpa_t addr, int len, const void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	struct kvm_pit *pit = speaker_to_pit(this);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	struct kvm_kpit_state *pit_state = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	u32 val = *(u32 *) data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 		return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	mutex_lock(&pit_state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	pit_state->speaker_data_on = (val >> 1) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	pit_set_gate(pit, 2, val & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	mutex_unlock(&pit_state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) static int speaker_ioport_read(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 				   struct kvm_io_device *this,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 				   gpa_t addr, int len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	struct kvm_pit *pit = speaker_to_pit(this);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	struct kvm_kpit_state *pit_state = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	unsigned int refresh_clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 		return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	mutex_lock(&pit_state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 		(pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	if (len > sizeof(ret))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 		len = sizeof(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 	memcpy(data, (char *)&ret, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	mutex_unlock(&pit_state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) static void kvm_pit_reset(struct kvm_pit *pit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 	struct kvm_kpit_channel_state *c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 	pit->pit_state.flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 	for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 		c = &pit->pit_state.channels[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 		c->mode = 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 		c->gate = (i != 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 		pit_load_count(pit, i, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 	kvm_pit_reset_reinject(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	if (!mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 		kvm_pit_reset_reinject(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) static const struct kvm_io_device_ops pit_dev_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	.read     = pit_ioport_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 	.write    = pit_ioport_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) static const struct kvm_io_device_ops speaker_dev_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 	.read     = speaker_ioport_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 	.write    = speaker_ioport_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	struct kvm_pit *pit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 	struct kvm_kpit_state *pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 	struct pid *pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 	pid_t pid_nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	if (!pit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 	if (pit->irq_source_id < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 		goto fail_request;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	mutex_init(&pit->pit_state.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 	pid = get_pid(task_tgid(current));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 	pid_nr = pid_vnr(pid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 	put_pid(pid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 	pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	if (IS_ERR(pit->worker))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 		goto fail_kthread;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 	kthread_init_work(&pit->expired, pit_do_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	pit->kvm = kvm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	pit_state = &pit->pit_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 	hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	pit_state->timer.function = pit_timer_fn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 	pit_state->irq_ack_notifier.gsi = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	pit->mask_notifier.func = pit_mask_notifer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	kvm_pit_reset(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	kvm_pit_set_reinject(pit, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 	mutex_lock(&kvm->slots_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 				      KVM_PIT_MEM_LENGTH, &pit->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 		goto fail_register_pit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 	if (flags & KVM_PIT_SPEAKER_DUMMY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 					      KVM_SPEAKER_BASE_ADDRESS, 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 					      &pit->speaker_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 			goto fail_register_speaker;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	mutex_unlock(&kvm->slots_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	return pit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) fail_register_speaker:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) fail_register_pit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 	mutex_unlock(&kvm->slots_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	kvm_pit_set_reinject(pit, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 	kthread_destroy_worker(pit->worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) fail_kthread:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 	kvm_free_irq_source_id(kvm, pit->irq_source_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) fail_request:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	kfree(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) void kvm_free_pit(struct kvm *kvm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 	struct kvm_pit *pit = kvm->arch.vpit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 	if (pit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 		mutex_lock(&kvm->slots_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 		mutex_unlock(&kvm->slots_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 		kvm_pit_set_reinject(pit, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 		hrtimer_cancel(&pit->pit_state.timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 		kthread_destroy_worker(pit->worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 		kvm_free_irq_source_id(kvm, pit->irq_source_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 		kfree(pit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) }