^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * TSC frequency enumeration via MSR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 2013, 2018 Intel Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Author: Bin Gao <bin.gao@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/thread_info.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <asm/apic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <asm/cpu_device_id.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <asm/intel-family.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <asm/msr.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <asm/param.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <asm/tsc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #define MAX_NUM_FREQS 16 /* 4 bits to select the frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * unclear if the root PLL outputs are used directly by the CPU clock PLL or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * if there is another PLL in between.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * This does not matter though, we can model the chain of PLLs as a single PLL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) * with a quotient equal to the quotients of all PLLs in the chain multiplied.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * So we can create a simplified model of the CPU clock setup using a reference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) * clock of 100 MHz plus a quotient which gets us as close to the frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * from the SDM as possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define TSC_REFERENCE_KHZ 100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) struct muldiv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) u32 multiplier;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) u32 divider;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * so we need manually differentiate SoC families. This is what the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) * field use_msr_plat does.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) struct freq_desc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) bool use_msr_plat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) struct muldiv muldiv[MAX_NUM_FREQS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) * Some CPU frequencies in the SDM do not map to known PLL freqs, in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * that case the muldiv array is empty and the freqs array is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) u32 freqs[MAX_NUM_FREQS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * Penwell and Clovertrail use spread spectrum clock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * so the freq number is not exactly the same as reported
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * by MSR based on SDM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) static const struct freq_desc freq_desc_pnw = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) .use_msr_plat = false,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) .freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) .mask = 0x07,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) static const struct freq_desc freq_desc_clv = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) .use_msr_plat = false,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) .freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) .mask = 0x07,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * 000: 100 * 5 / 6 = 83.3333 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) * 001: 100 * 1 / 1 = 100.0000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) * 010: 100 * 4 / 3 = 133.3333 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) * 011: 100 * 7 / 6 = 116.6667 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) * 100: 100 * 4 / 5 = 80.0000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) static const struct freq_desc freq_desc_byt = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) .use_msr_plat = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) { 4, 5 } },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) .mask = 0x07,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * 0000: 100 * 5 / 6 = 83.3333 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) * 0001: 100 * 1 / 1 = 100.0000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) * 0010: 100 * 4 / 3 = 133.3333 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) * 0011: 100 * 7 / 6 = 116.6667 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * 0100: 100 * 4 / 5 = 80.0000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * 0101: 100 * 14 / 15 = 93.3333 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) * 0110: 100 * 9 / 10 = 90.0000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) * 0111: 100 * 8 / 9 = 88.8889 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) * 1000: 100 * 7 / 8 = 87.5000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) static const struct freq_desc freq_desc_cht = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) .use_msr_plat = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) { 7, 8 } },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) .mask = 0x0f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * 0001: 100 * 1 / 1 = 100.0000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * 0010: 100 * 4 / 3 = 133.3333 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) static const struct freq_desc freq_desc_tng = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) .use_msr_plat = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) .muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) .mask = 0x07,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) * 0000: 100 * 5 / 6 = 83.3333 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) * 0001: 100 * 1 / 1 = 100.0000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) * 0010: 100 * 4 / 3 = 133.3333 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) * 0011: 100 * 1 / 1 = 100.0000 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) static const struct freq_desc freq_desc_ann = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) .use_msr_plat = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) .mask = 0x0f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) * 24 MHz crystal? : 24 * 13 / 4 = 78 MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) * Frequency step for Lightning Mountain SoC is fixed to 78 MHz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) * so all the frequency entries are 78000.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static const struct freq_desc freq_desc_lgm = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) .use_msr_plat = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) .freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) .mask = 0x0f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_MID, &freq_desc_pnw),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_TABLET,&freq_desc_clv),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &freq_desc_byt),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &freq_desc_tng),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &freq_desc_cht),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &freq_desc_ann),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_NP, &freq_desc_lgm),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) * MSR-based CPU/TSC frequency discovery for certain CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) * Return processor base frequency in KHz, or 0 on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) unsigned long cpu_khz_from_msr(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) u32 lo, hi, ratio, freq, tscref;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) const struct freq_desc *freq_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) const struct x86_cpu_id *id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) const struct muldiv *md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) unsigned long res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) id = x86_match_cpu(tsc_msr_cpu_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) if (!id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) freq_desc = (struct freq_desc *)id->driver_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) if (freq_desc->use_msr_plat) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) rdmsr(MSR_PLATFORM_INFO, lo, hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) ratio = (lo >> 8) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) ratio = (hi >> 8) & 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) /* Get FSB FREQ ID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) rdmsr(MSR_FSB_FREQ, lo, hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) index = lo & freq_desc->mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) md = &freq_desc->muldiv[index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) * Note this also catches cases where the index points to an unpopulated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) * part of muldiv, in that case the else will set freq and res to 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) if (md->divider) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) tscref = TSC_REFERENCE_KHZ * md->multiplier;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) freq = DIV_ROUND_CLOSEST(tscref, md->divider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) * Multiplying by ratio before the division has better
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * accuracy than just calculating freq * ratio.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) freq = freq_desc->freqs[index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) res = freq * ratio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) if (freq == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) #ifdef CONFIG_X86_LOCAL_APIC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) lapic_timer_period = (freq * 1000) / HZ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) * TSC frequency determined by MSR is always considered "known"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) * because it is reported by HW.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) * Another fact is that on MSR capable platforms, PIT/HPET is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) * generally not available so calibration won't work at all.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) * Unfortunately there is no way for hardware to tell whether the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) * TSC is reliable. We were told by silicon design team that TSC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) * on Atom SoCs are always "reliable". TSC is also the only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) * reliable clocksource on these SoCs (HPET is either not present
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) * or not functional) so mark TSC reliable which removes the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) * requirement for a watchdog clocksource.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) }