Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Kernel Probes (KProbes)
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation ( includes contributions from
* Rusty Russell).
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
* 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
* <prasanna@in.ibm.com> adapted for x86_64 from i386.
* 2005-Mar Roland McGrath <roland@redhat.com>
* Fixed to handle %rip-relative addressing mode correctly.
* 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
* <prasanna@in.ibm.com> added function-return probes.
* 2005-May Rusty Lynch <rusty.lynch@intel.com>
* Added function return probes functionality
* 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
* kprobe-booster and kretprobe-booster for i386.
* 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
* and kretprobe-booster for x86-64
* 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
* <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
* unified x86 kprobes code.
*/
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/hardirq.h>
#include <linux/preempt.h>
#include <linux/sched/debug.h>
#include <linux/perf_event.h>
#include <linux/extable.h>
#include <linux/kdebug.h>
#include <linux/kallsyms.h>
#include <linux/ftrace.h>
#include <linux/kasan.h>
#include <linux/moduleloader.h>
#include <linux/objtool.h>
#include <linux/vmalloc.h>
#include <linux/pgtable.h>
#include <asm/text-patching.h>
#include <asm/cacheflush.h>
#include <asm/desc.h>
#include <linux/uaccess.h>
#include <asm/alternative.h>
#include <asm/insn.h>
#include <asm/debugreg.h>
#include <asm/set_memory.h>
#include "common.h"
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
#define stack_addr(regs) ((unsigned long *)regs->sp)
#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
<------>(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
<------> (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
<------> (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
<------> (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
<------> << (row % 32))
<------>/*
<------> * Undefined/reserved opcodes, conditional jump, Opcode Extension
<------> * Groups, and some special opcodes can not boost.
<------> * This is non-const and volatile to keep gcc from statically
<------> * optimizing it out, as variable_test_bit makes gcc think only
<------> * *(unsigned long*) is used.
<------> */
static volatile u32 twobyte_is_boostable[256 / 32] = {
<------>/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
<------>/* ---------------------------------------------- */
<------>W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
<------>W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
<------>W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
<------>W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
<------>W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
<------>W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
<------>W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
<------>W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
<------>W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
<------>W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
<------>W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
<------>W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
<------>W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
<------>W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
<------>W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
<------>W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
<------>/* ----------------------------------------------- */
<------>/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#undef W
struct kretprobe_blackpoint kretprobe_blacklist[] = {
<------>{"__switch_to", }, /* This function switches only current task, but
<------><------><------> doesn't switch kernel stack.*/
<------>{NULL, NULL} /* Terminator */
};
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
static nokprobe_inline void
__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
{
<------>struct __arch_relative_insn {
<------><------>u8 op;
<------><------>s32 raddr;
<------>} __packed *insn;
<------>insn = (struct __arch_relative_insn *)dest;
<------>insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
<------>insn->op = op;
}
/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
void synthesize_reljump(void *dest, void *from, void *to)
{
<------>__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
}
NOKPROBE_SYMBOL(synthesize_reljump);
/* Insert a call instruction at address 'from', which calls address 'to'.*/
void synthesize_relcall(void *dest, void *from, void *to)
{
<------>__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
}
NOKPROBE_SYMBOL(synthesize_relcall);
/*
* Skip the prefixes of the instruction.
*/
static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
{
<------>insn_attr_t attr;
<------>attr = inat_get_opcode_attribute((insn_byte_t)*insn);
<------>while (inat_is_legacy_prefix(attr)) {
<------><------>insn++;
<------><------>attr = inat_get_opcode_attribute((insn_byte_t)*insn);
<------>}
#ifdef CONFIG_X86_64
<------>if (inat_is_rex_prefix(attr))
<------><------>insn++;
#endif
<------>return insn;
}
NOKPROBE_SYMBOL(skip_prefixes);
/*
* Returns non-zero if INSN is boostable.
* RIP relative instructions are adjusted at copying time in 64 bits mode
*/
int can_boost(struct insn *insn, void *addr)
{
<------>kprobe_opcode_t opcode;
<------>insn_byte_t prefix;
<------>int i;
<------>if (search_exception_tables((unsigned long)addr))
<------><------>return 0; /* Page fault may occur on this address. */
<------>/* 2nd-byte opcode */
<------>if (insn->opcode.nbytes == 2)
<------><------>return test_bit(insn->opcode.bytes[1],
<------><------><------><------>(unsigned long *)twobyte_is_boostable);
<------>if (insn->opcode.nbytes != 1)
<------><------>return 0;
<------>for_each_insn_prefix(insn, i, prefix) {
<------><------>insn_attr_t attr;
<------><------>attr = inat_get_opcode_attribute(prefix);
<------><------>/* Can't boost Address-size override prefix and CS override prefix */
<------><------>if (prefix == 0x2e || inat_is_address_size_prefix(attr))
<------><------><------>return 0;
<------>}
<------>opcode = insn->opcode.bytes[0];
<------>switch (opcode & 0xf0) {
<------>case 0x60:
<------><------>/* can't boost "bound" */
<------><------>return (opcode != 0x62);
<------>case 0x70:
<------><------>return 0; /* can't boost conditional jump */
<------>case 0x90:
<------><------>return opcode != 0x9a; /* can't boost call far */
<------>case 0xc0:
<------><------>/* can't boost software-interruptions */
<------><------>return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
<------>case 0xd0:
<------><------>/* can boost AA* and XLAT */
<------><------>return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
<------>case 0xe0:
<------><------>/* can boost in/out and absolute jmps */
<------><------>return ((opcode & 0x04) || opcode == 0xea);
<------>case 0xf0:
<------><------>/* clear and set flags are boostable */
<------><------>return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
<------>default:
<------><------>/* call is not boostable */
<------><------>return opcode != 0x9a;
<------>}
}
static unsigned long
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
{
<------>struct kprobe *kp;
<------>unsigned long faddr;
<------>kp = get_kprobe((void *)addr);
<------>faddr = ftrace_location(addr);
<------>/*
<------> * Addresses inside the ftrace location are refused by
<------> * arch_check_ftrace_location(). Something went terribly wrong
<------> * if such an address is checked here.
<------> */
<------>if (WARN_ON(faddr && faddr != addr))
<------><------>return 0UL;
<------>/*
<------> * Use the current code if it is not modified by Kprobe
<------> * and it cannot be modified by ftrace.
<------> */
<------>if (!kp && !faddr)
<------><------>return addr;
<------>/*
<------> * Basically, kp->ainsn.insn has an original instruction.
<------> * However, RIP-relative instruction can not do single-stepping
<------> * at different place, __copy_instruction() tweaks the displacement of
<------> * that instruction. In that case, we can't recover the instruction
<------> * from the kp->ainsn.insn.
<------> *
<------> * On the other hand, in case on normal Kprobe, kp->opcode has a copy
<------> * of the first byte of the probed instruction, which is overwritten
<------> * by int3. And the instruction at kp->addr is not modified by kprobes
<------> * except for the first byte, we can recover the original instruction
<------> * from it and kp->opcode.
<------> *
<------> * In case of Kprobes using ftrace, we do not have a copy of
<------> * the original instruction. In fact, the ftrace location might
<------> * be modified at anytime and even could be in an inconsistent state.
<------> * Fortunately, we know that the original code is the ideal 5-byte
<------> * long NOP.
<------> */
<------>if (copy_from_kernel_nofault(buf, (void *)addr,
<------><------>MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
<------><------>return 0UL;
<------>if (faddr)
<------><------>memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
<------>else
<------><------>buf[0] = kp->opcode;
<------>return (unsigned long)buf;
}
/*
* Recover the probed instruction at addr for further analysis.
* Caller must lock kprobes by kprobe_mutex, or disable preemption
* for preventing to release referencing kprobes.
* Returns zero if the instruction can not get recovered (or access failed).
*/
unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
{
<------>unsigned long __addr;
<------>__addr = __recover_optprobed_insn(buf, addr);
<------>if (__addr != addr)
<------><------>return __addr;
<------>return __recover_probed_insn(buf, addr);
}
/* Check if paddr is at an instruction boundary */
static int can_probe(unsigned long paddr)
{
<------>unsigned long addr, __addr, offset = 0;
<------>struct insn insn;
<------>kprobe_opcode_t buf[MAX_INSN_SIZE];
<------>if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
<------><------>return 0;
<------>/* Decode instructions */
<------>addr = paddr - offset;
<------>while (addr < paddr) {
<------><------>/*
<------><------> * Check if the instruction has been modified by another
<------><------> * kprobe, in which case we replace the breakpoint by the
<------><------> * original instruction in our buffer.
<------><------> * Also, jump optimization will change the breakpoint to
<------><------> * relative-jump. Since the relative-jump itself is
<------><------> * normally used, we just go through if there is no kprobe.
<------><------> */
<------><------>__addr = recover_probed_instruction(buf, addr);
<------><------>if (!__addr)
<------><------><------>return 0;
<------><------>kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
<------><------>insn_get_length(&insn);
<------><------>/*
<------><------> * Another debugging subsystem might insert this breakpoint.
<------><------> * In that case, we can't recover it.
<------><------> */
<------><------>if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
<------><------><------>return 0;
<------><------>addr += insn.length;
<------>}
<------>return (addr == paddr);
}
/*
* Returns non-zero if opcode modifies the interrupt flag.
*/
static int is_IF_modifier(kprobe_opcode_t *insn)
{
<------>/* Skip prefixes */
<------>insn = skip_prefixes(insn);
<------>switch (*insn) {
<------>case 0xfa: /* cli */
<------>case 0xfb: /* sti */
<------>case 0xcf: /* iret/iretd */
<------>case 0x9d: /* popf/popfd */
<------><------>return 1;
<------>}
<------>return 0;
}
/*
* Copy an instruction with recovering modified instruction by kprobes
* and adjust the displacement if the instruction uses the %rip-relative
* addressing mode. Note that since @real will be the final place of copied
* instruction, displacement must be adjust by @real, not @dest.
* This returns the length of copied instruction, or 0 if it has an error.
*/
int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
{
<------>kprobe_opcode_t buf[MAX_INSN_SIZE];
<------>unsigned long recovered_insn =
<------><------>recover_probed_instruction(buf, (unsigned long)src);
<------>if (!recovered_insn || !insn)
<------><------>return 0;
<------>/* This can access kernel text if given address is not recovered */
<------>if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
<------><------><------>MAX_INSN_SIZE))
<------><------>return 0;
<------>kernel_insn_init(insn, dest, MAX_INSN_SIZE);
<------>insn_get_length(insn);
<------>/* We can not probe force emulate prefixed instruction */
<------>if (insn_has_emulate_prefix(insn))
<------><------>return 0;
<------>/* Another subsystem puts a breakpoint, failed to recover */
<------>if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
<------><------>return 0;
<------>/* We should not singlestep on the exception masking instructions */
<------>if (insn_masking_exception(insn))
<------><------>return 0;
#ifdef CONFIG_X86_64
<------>/* Only x86_64 has RIP relative instructions */
<------>if (insn_rip_relative(insn)) {
<------><------>s64 newdisp;
<------><------>u8 *disp;
<------><------>/*
<------><------> * The copied instruction uses the %rip-relative addressing
<------><------> * mode. Adjust the displacement for the difference between
<------><------> * the original location of this instruction and the location
<------><------> * of the copy that will actually be run. The tricky bit here
<------><------> * is making sure that the sign extension happens correctly in
<------><------> * this calculation, since we need a signed 32-bit result to
<------><------> * be sign-extended to 64 bits when it's added to the %rip
<------><------> * value and yield the same 64-bit result that the sign-
<------><------> * extension of the original signed 32-bit displacement would
<------><------> * have given.
<------><------> */
<------><------>newdisp = (u8 *) src + (s64) insn->displacement.value
<------><------><------> - (u8 *) real;
<------><------>if ((s64) (s32) newdisp != newdisp) {
<------><------><------>pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
<------><------><------>return 0;
<------><------>}
<------><------>disp = (u8 *) dest + insn_offset_displacement(insn);
<------><------>*(s32 *) disp = (s32) newdisp;
<------>}
#endif
<------>return insn->length;
}
/* Prepare reljump right after instruction to boost */
static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
<------><------><------> struct insn *insn)
{
<------>int len = insn->length;
<------>if (can_boost(insn, p->addr) &&
<------> MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
<------><------>/*
<------><------> * These instructions can be executed directly if it
<------><------> * jumps back to correct address.
<------><------> */
<------><------>synthesize_reljump(buf + len, p->ainsn.insn + len,
<------><------><------><------> p->addr + insn->length);
<------><------>len += JMP32_INSN_SIZE;
<------><------>p->ainsn.boostable = true;
<------>} else {
<------><------>p->ainsn.boostable = false;
<------>}
<------>return len;
}
/* Make page to RO mode when allocate it */
void *alloc_insn_page(void)
{
<------>void *page;
<------>page = module_alloc(PAGE_SIZE);
<------>if (!page)
<------><------>return NULL;
<------>set_vm_flush_reset_perms(page);
<------>/*
<------> * First make the page read-only, and only then make it executable to
<------> * prevent it from being W+X in between.
<------> */
<------>set_memory_ro((unsigned long)page, 1);
<------>/*
<------> * TODO: Once additional kernel code protection mechanisms are set, ensure
<------> * that the page was not maliciously altered and it is still zeroed.
<------> */
<------>set_memory_x((unsigned long)page, 1);
<------>return page;
}
/* Recover page to RW mode before releasing it */
void free_insn_page(void *page)
{
<------>module_memfree(page);
}
static int arch_copy_kprobe(struct kprobe *p)
{
<------>struct insn insn;
<------>kprobe_opcode_t buf[MAX_INSN_SIZE];
<------>int len;
<------>/* Copy an instruction with recovering if other optprobe modifies it.*/
<------>len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
<------>if (!len)
<------><------>return -EINVAL;
<------>/*
<------> * __copy_instruction can modify the displacement of the instruction,
<------> * but it doesn't affect boostable check.
<------> */
<------>len = prepare_boost(buf, p, &insn);
<------>/* Check whether the instruction modifies Interrupt Flag or not */
<------>p->ainsn.if_modifier = is_IF_modifier(buf);
<------>/* Also, displacement change doesn't affect the first byte */
<------>p->opcode = buf[0];
<------>p->ainsn.tp_len = len;
<------>perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
<------>/* OK, write back the instruction(s) into ROX insn buffer */
<------>text_poke(p->ainsn.insn, buf, len);
<------>return 0;
}
int arch_prepare_kprobe(struct kprobe *p)
{
<------>int ret;
<------>if (alternatives_text_reserved(p->addr, p->addr))
<------><------>return -EINVAL;
<------>if (!can_probe((unsigned long)p->addr))
<------><------>return -EILSEQ;
<------>/* insn: must be on special executable page on x86. */
<------>p->ainsn.insn = get_insn_slot();
<------>if (!p->ainsn.insn)
<------><------>return -ENOMEM;
<------>ret = arch_copy_kprobe(p);
<------>if (ret) {
<------><------>free_insn_slot(p->ainsn.insn, 0);
<------><------>p->ainsn.insn = NULL;
<------>}
<------>return ret;
}
void arch_arm_kprobe(struct kprobe *p)
{
<------>u8 int3 = INT3_INSN_OPCODE;
<------>text_poke(p->addr, &int3, 1);
<------>text_poke_sync();
<------>perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
}
void arch_disarm_kprobe(struct kprobe *p)
{
<------>u8 int3 = INT3_INSN_OPCODE;
<------>perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
<------>text_poke(p->addr, &p->opcode, 1);
<------>text_poke_sync();
}
void arch_remove_kprobe(struct kprobe *p)
{
<------>if (p->ainsn.insn) {
<------><------>/* Record the perf event before freeing the slot */
<------><------>perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
<------><------><------><------> p->ainsn.tp_len, NULL, 0);
<------><------>free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
<------><------>p->ainsn.insn = NULL;
<------>}
}
static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
<------>kcb->prev_kprobe.kp = kprobe_running();
<------>kcb->prev_kprobe.status = kcb->kprobe_status;
<------>kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
<------>kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
}
static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
<------>__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
<------>kcb->kprobe_status = kcb->prev_kprobe.status;
<------>kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
<------>kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
}
static nokprobe_inline void
set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
<------><------> struct kprobe_ctlblk *kcb)
{
<------>__this_cpu_write(current_kprobe, p);
<------>kcb->kprobe_saved_flags = kcb->kprobe_old_flags
<------><------>= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
<------>if (p->ainsn.if_modifier)
<------><------>kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
}
static nokprobe_inline void clear_btf(void)
{
<------>if (test_thread_flag(TIF_BLOCKSTEP)) {
<------><------>unsigned long debugctl = get_debugctlmsr();
<------><------>debugctl &= ~DEBUGCTLMSR_BTF;
<------><------>update_debugctlmsr(debugctl);
<------>}
}
static nokprobe_inline void restore_btf(void)
{
<------>if (test_thread_flag(TIF_BLOCKSTEP)) {
<------><------>unsigned long debugctl = get_debugctlmsr();
<------><------>debugctl |= DEBUGCTLMSR_BTF;
<------><------>update_debugctlmsr(debugctl);
<------>}
}
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
{
<------>unsigned long *sara = stack_addr(regs);
<------>ri->ret_addr = (kprobe_opcode_t *) *sara;
<------>ri->fp = sara;
<------>/* Replace the return addr with trampoline addr */
<------>*sara = (unsigned long) &kretprobe_trampoline;
}
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
<------><------><------> struct kprobe_ctlblk *kcb, int reenter)
{
<------>if (setup_detour_execution(p, regs, reenter))
<------><------>return;
#if !defined(CONFIG_PREEMPTION)
<------>if (p->ainsn.boostable && !p->post_handler) {
<------><------>/* Boost up -- we can execute copied instructions directly */
<------><------>if (!reenter)
<------><------><------>reset_current_kprobe();
<------><------>/*
<------><------> * Reentering boosted probe doesn't reset current_kprobe,
<------><------> * nor set current_kprobe, because it doesn't use single
<------><------> * stepping.
<------><------> */
<------><------>regs->ip = (unsigned long)p->ainsn.insn;
<------><------>return;
<------>}
#endif
<------>if (reenter) {
<------><------>save_previous_kprobe(kcb);
<------><------>set_current_kprobe(p, regs, kcb);
<------><------>kcb->kprobe_status = KPROBE_REENTER;
<------>} else
<------><------>kcb->kprobe_status = KPROBE_HIT_SS;
<------>/* Prepare real single stepping */
<------>clear_btf();
<------>regs->flags |= X86_EFLAGS_TF;
<------>regs->flags &= ~X86_EFLAGS_IF;
<------>/* single step inline if the instruction is an int3 */
<------>if (p->opcode == INT3_INSN_OPCODE)
<------><------>regs->ip = (unsigned long)p->addr;
<------>else
<------><------>regs->ip = (unsigned long)p->ainsn.insn;
}
NOKPROBE_SYMBOL(setup_singlestep);
/*
* We have reentered the kprobe_handler(), since another probe was hit while
* within the handler. We save the original kprobes variables and just single
* step on the instruction of the new probe without calling any user handlers.
*/
static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
<------><------><------> struct kprobe_ctlblk *kcb)
{
<------>switch (kcb->kprobe_status) {
<------>case KPROBE_HIT_SSDONE:
<------>case KPROBE_HIT_ACTIVE:
<------>case KPROBE_HIT_SS:
<------><------>kprobes_inc_nmissed_count(p);
<------><------>setup_singlestep(p, regs, kcb, 1);
<------><------>break;
<------>case KPROBE_REENTER:
<------><------>/* A probe has been hit in the codepath leading up to, or just
<------><------> * after, single-stepping of a probed instruction. This entire
<------><------> * codepath should strictly reside in .kprobes.text section.
<------><------> * Raise a BUG or we'll continue in an endless reentering loop
<------><------> * and eventually a stack overflow.
<------><------> */
<------><------>pr_err("Unrecoverable kprobe detected.\n");
<------><------>dump_kprobe(p);
<------><------>BUG();
<------>default:
<------><------>/* impossible cases */
<------><------>WARN_ON(1);
<------><------>return 0;
<------>}
<------>return 1;
}
NOKPROBE_SYMBOL(reenter_kprobe);
/*
* Interrupts are disabled on entry as trap3 is an interrupt gate and they
* remain disabled throughout this function.
*/
int kprobe_int3_handler(struct pt_regs *regs)
{
<------>kprobe_opcode_t *addr;
<------>struct kprobe *p;
<------>struct kprobe_ctlblk *kcb;
<------>if (user_mode(regs))
<------><------>return 0;
<------>addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
<------>/*
<------> * We don't want to be preempted for the entire duration of kprobe
<------> * processing. Since int3 and debug trap disables irqs and we clear
<------> * IF while singlestepping, it must be no preemptible.
<------> */
<------>kcb = get_kprobe_ctlblk();
<------>p = get_kprobe(addr);
<------>if (p) {
<------><------>if (kprobe_running()) {
<------><------><------>if (reenter_kprobe(p, regs, kcb))
<------><------><------><------>return 1;
<------><------>} else {
<------><------><------>set_current_kprobe(p, regs, kcb);
<------><------><------>kcb->kprobe_status = KPROBE_HIT_ACTIVE;
<------><------><------>/*
<------><------><------> * If we have no pre-handler or it returned 0, we
<------><------><------> * continue with normal processing. If we have a
<------><------><------> * pre-handler and it returned non-zero, that means
<------><------><------> * user handler setup registers to exit to another
<------><------><------> * instruction, we must skip the single stepping.
<------><------><------> */
<------><------><------>if (!p->pre_handler || !p->pre_handler(p, regs))
<------><------><------><------>setup_singlestep(p, regs, kcb, 0);
<------><------><------>else
<------><------><------><------>reset_current_kprobe();
<------><------><------>return 1;
<------><------>}
<------>} else if (*addr != INT3_INSN_OPCODE) {
<------><------>/*
<------><------> * The breakpoint instruction was removed right
<------><------> * after we hit it. Another cpu has removed
<------><------> * either a probepoint or a debugger breakpoint
<------><------> * at this address. In either case, no further
<------><------> * handling of this interrupt is appropriate.
<------><------> * Back up over the (now missing) int3 and run
<------><------> * the original instruction.
<------><------> */
<------><------>regs->ip = (unsigned long)addr;
<------><------>return 1;
<------>} /* else: not a kprobe fault; let the kernel handle it */
<------>return 0;
}
NOKPROBE_SYMBOL(kprobe_int3_handler);
/*
* When a retprobed function returns, this code saves registers and
* calls trampoline_handler() runs, which calls the kretprobe's handler.
*/
asm(
<------>".text\n"
<------>".global kretprobe_trampoline\n"
<------>".type kretprobe_trampoline, @function\n"
<------>"kretprobe_trampoline:\n"
<------>/* We don't bother saving the ss register */
#ifdef CONFIG_X86_64
<------>" pushq %rsp\n"
<------>" pushfq\n"
<------>SAVE_REGS_STRING
<------>" movq %rsp, %rdi\n"
<------>" call trampoline_handler\n"
<------>/* Replace saved sp with true return address. */
<------>" movq %rax, 19*8(%rsp)\n"
<------>RESTORE_REGS_STRING
<------>" popfq\n"
#else
<------>" pushl %esp\n"
<------>" pushfl\n"
<------>SAVE_REGS_STRING
<------>" movl %esp, %eax\n"
<------>" call trampoline_handler\n"
<------>/* Replace saved sp with true return address. */
<------>" movl %eax, 15*4(%esp)\n"
<------>RESTORE_REGS_STRING
<------>" popfl\n"
#endif
<------>" ret\n"
<------>".size kretprobe_trampoline, .-kretprobe_trampoline\n"
);
NOKPROBE_SYMBOL(kretprobe_trampoline);
STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
/*
* Called from kretprobe_trampoline
*/
__used __visible void *trampoline_handler(struct pt_regs *regs)
{
<------>/* fixup registers */
<------>regs->cs = __KERNEL_CS;
#ifdef CONFIG_X86_32
<------>regs->gs = 0;
#endif
<------>regs->ip = (unsigned long)&kretprobe_trampoline;
<------>regs->orig_ax = ~0UL;
<------>return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, &regs->sp);
}
NOKPROBE_SYMBOL(trampoline_handler);
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the "int 3"
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*
* This function prepares to return from the post-single-step
* interrupt. We have to fix up the stack as follows:
*
* 0) Except in the case of absolute or indirect jump or call instructions,
* the new ip is relative to the copied instruction. We need to make
* it relative to the original instruction.
*
* 1) If the single-stepped instruction was pushfl, then the TF and IF
* flags are set in the just-pushed flags, and may need to be cleared.
*
* 2) If the single-stepped instruction was a call, the return address
* that is atop the stack is the address following the copied instruction.
* We need to make it the address following the original instruction.
*
* If this is the first time we've single-stepped the instruction at
* this probepoint, and the instruction is boostable, boost it: add a
* jump instruction after the copied instruction, that jumps to the next
* instruction after the probepoint.
*/
static void resume_execution(struct kprobe *p, struct pt_regs *regs,
<------><------><------> struct kprobe_ctlblk *kcb)
{
<------>unsigned long *tos = stack_addr(regs);
<------>unsigned long copy_ip = (unsigned long)p->ainsn.insn;
<------>unsigned long orig_ip = (unsigned long)p->addr;
<------>kprobe_opcode_t *insn = p->ainsn.insn;
<------>/* Skip prefixes */
<------>insn = skip_prefixes(insn);
<------>regs->flags &= ~X86_EFLAGS_TF;
<------>switch (*insn) {
<------>case 0x9c: /* pushfl */
<------><------>*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
<------><------>*tos |= kcb->kprobe_old_flags;
<------><------>break;
<------>case 0xc2: /* iret/ret/lret */
<------>case 0xc3:
<------>case 0xca:
<------>case 0xcb:
<------>case 0xcf:
<------>case 0xea: /* jmp absolute -- ip is correct */
<------><------>/* ip is already adjusted, no more changes required */
<------><------>p->ainsn.boostable = true;
<------><------>goto no_change;
<------>case 0xe8: /* call relative - Fix return addr */
<------><------>*tos = orig_ip + (*tos - copy_ip);
<------><------>break;
#ifdef CONFIG_X86_32
<------>case 0x9a: /* call absolute -- same as call absolute, indirect */
<------><------>*tos = orig_ip + (*tos - copy_ip);
<------><------>goto no_change;
#endif
<------>case 0xff:
<------><------>if ((insn[1] & 0x30) == 0x10) {
<------><------><------>/*
<------><------><------> * call absolute, indirect
<------><------><------> * Fix return addr; ip is correct.
<------><------><------> * But this is not boostable
<------><------><------> */
<------><------><------>*tos = orig_ip + (*tos - copy_ip);
<------><------><------>goto no_change;
<------><------>} else if (((insn[1] & 0x31) == 0x20) ||
<------><------><------> ((insn[1] & 0x31) == 0x21)) {
<------><------><------>/*
<------><------><------> * jmp near and far, absolute indirect
<------><------><------> * ip is correct. And this is boostable
<------><------><------> */
<------><------><------>p->ainsn.boostable = true;
<------><------><------>goto no_change;
<------><------>}
<------>default:
<------><------>break;
<------>}
<------>regs->ip += orig_ip - copy_ip;
no_change:
<------>restore_btf();
}
NOKPROBE_SYMBOL(resume_execution);
/*
* Interrupts are disabled on entry as trap1 is an interrupt gate and they
* remain disabled throughout this function.
*/
int kprobe_debug_handler(struct pt_regs *regs)
{
<------>struct kprobe *cur = kprobe_running();
<------>struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
<------>if (!cur)
<------><------>return 0;
<------>resume_execution(cur, regs, kcb);
<------>regs->flags |= kcb->kprobe_saved_flags;
<------>if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
<------><------>kcb->kprobe_status = KPROBE_HIT_SSDONE;
<------><------>cur->post_handler(cur, regs, 0);
<------>}
<------>/* Restore back the original saved kprobes variables and continue. */
<------>if (kcb->kprobe_status == KPROBE_REENTER) {
<------><------>restore_previous_kprobe(kcb);
<------><------>goto out;
<------>}
<------>reset_current_kprobe();
out:
<------>/*
<------> * if somebody else is singlestepping across a probe point, flags
<------> * will have TF set, in which case, continue the remaining processing
<------> * of do_debug, as if this is not a probe hit.
<------> */
<------>if (regs->flags & X86_EFLAGS_TF)
<------><------>return 0;
<------>return 1;
}
NOKPROBE_SYMBOL(kprobe_debug_handler);
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
<------>struct kprobe *cur = kprobe_running();
<------>struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
<------>if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
<------><------>/* This must happen on single-stepping */
<------><------>WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
<------><------><------>kcb->kprobe_status != KPROBE_REENTER);
<------><------>/*
<------><------> * We are here because the instruction being single
<------><------> * stepped caused a page fault. We reset the current
<------><------> * kprobe and the ip points back to the probe address
<------><------> * and allow the page fault handler to continue as a
<------><------> * normal page fault.
<------><------> */
<------><------>regs->ip = (unsigned long)cur->addr;
<------><------>/*
<------><------> * Trap flag (TF) has been set here because this fault
<------><------> * happened where the single stepping will be done.
<------><------> * So clear it by resetting the current kprobe:
<------><------> */
<------><------>regs->flags &= ~X86_EFLAGS_TF;
<------><------>/*
<------><------> * Since the single step (trap) has been cancelled,
<------><------> * we need to restore BTF here.
<------><------> */
<------><------>restore_btf();
<------><------>/*
<------><------> * If the TF flag was set before the kprobe hit,
<------><------> * don't touch it:
<------><------> */
<------><------>regs->flags |= kcb->kprobe_old_flags;
<------><------>if (kcb->kprobe_status == KPROBE_REENTER)
<------><------><------>restore_previous_kprobe(kcb);
<------><------>else
<------><------><------>reset_current_kprobe();
<------>} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
<------><------> kcb->kprobe_status == KPROBE_HIT_SSDONE) {
<------><------>/*
<------><------> * We increment the nmissed count for accounting,
<------><------> * we can also use npre/npostfault count for accounting
<------><------> * these specific fault cases.
<------><------> */
<------><------>kprobes_inc_nmissed_count(cur);
<------><------>/*
<------><------> * We come here because instructions in the pre/post
<------><------> * handler caused the page_fault, this could happen
<------><------> * if handler tries to access user space by
<------><------> * copy_from_user(), get_user() etc. Let the
<------><------> * user-specified handler try to fix it first.
<------><------> */
<------><------>if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
<------><------><------>return 1;
<------>}
<------>return 0;
}
NOKPROBE_SYMBOL(kprobe_fault_handler);
int __init arch_populate_kprobe_blacklist(void)
{
<------>return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
<------><------><------><------><------> (unsigned long)__entry_text_end);
}
int __init arch_init_kprobes(void)
{
<------>return 0;
}
int arch_trampoline_kprobe(struct kprobe *p)
{
<------>return 0;
}