Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* xsave/xrstor support.
*
* Author: Suresh Siddha <suresh.b.siddha@intel.com>
*/
#include <linux/compat.h>
#include <linux/cpu.h>
#include <linux/mman.h>
#include <linux/pkeys.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <asm/fpu/api.h>
#include <asm/fpu/internal.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/regset.h>
#include <asm/fpu/xstate.h>
#include <asm/tlbflush.h>
#include <asm/cpufeature.h>
/*
* Although we spell it out in here, the Processor Trace
* xfeature is completely unused. We use other mechanisms
* to save/restore PT state in Linux.
*/
static const char *xfeature_names[] =
{
<------>"x87 floating point registers" ,
<------>"SSE registers" ,
<------>"AVX registers" ,
<------>"MPX bounds registers" ,
<------>"MPX CSR" ,
<------>"AVX-512 opmask" ,
<------>"AVX-512 Hi256" ,
<------>"AVX-512 ZMM_Hi256" ,
<------>"Processor Trace (unused)" ,
<------>"Protection Keys User registers",
<------>"PASID state",
<------>"unknown xstate feature" ,
};
static short xsave_cpuid_features[] __initdata = {
<------>X86_FEATURE_FPU,
<------>X86_FEATURE_XMM,
<------>X86_FEATURE_AVX,
<------>X86_FEATURE_MPX,
<------>X86_FEATURE_MPX,
<------>X86_FEATURE_AVX512F,
<------>X86_FEATURE_AVX512F,
<------>X86_FEATURE_AVX512F,
<------>X86_FEATURE_INTEL_PT,
<------>X86_FEATURE_PKU,
<------>X86_FEATURE_ENQCMD,
};
/*
* This represents the full set of bits that should ever be set in a kernel
* XSAVE buffer, both supervisor and user xstates.
*/
u64 xfeatures_mask_all __read_mostly;
static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
static unsigned int xstate_sizes[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
static unsigned int xstate_comp_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
static unsigned int xstate_supervisor_only_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
/*
* The XSAVE area of kernel can be in standard or compacted format;
* it is always in standard format for user mode. This is the user
* mode standard format size used for signal and ptrace frames.
*/
unsigned int fpu_user_xstate_size;
/*
* Return whether the system supports a given xfeature.
*
* Also return the name of the (most advanced) feature that the caller requested:
*/
int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
{
<------>u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask_all;
<------>if (unlikely(feature_name)) {
<------><------>long xfeature_idx, max_idx;
<------><------>u64 xfeatures_print;
<------><------>/*
<------><------> * So we use FLS here to be able to print the most advanced
<------><------> * feature that was requested but is missing. So if a driver
<------><------> * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
<------><------> * missing AVX feature - this is the most informative message
<------><------> * to users:
<------><------> */
<------><------>if (xfeatures_missing)
<------><------><------>xfeatures_print = xfeatures_missing;
<------><------>else
<------><------><------>xfeatures_print = xfeatures_needed;
<------><------>xfeature_idx = fls64(xfeatures_print)-1;
<------><------>max_idx = ARRAY_SIZE(xfeature_names)-1;
<------><------>xfeature_idx = min(xfeature_idx, max_idx);
<------><------>*feature_name = xfeature_names[xfeature_idx];
<------>}
<------>if (xfeatures_missing)
<------><------>return 0;
<------>return 1;
}
EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
static bool xfeature_is_supervisor(int xfeature_nr)
{
<------>/*
<------> * Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)
<------> * returns ECX[0] set to (1) for a supervisor state, and cleared (0)
<------> * for a user state.
<------> */
<------>u32 eax, ebx, ecx, edx;
<------>cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
<------>return ecx & 1;
}
/*
* When executing XSAVEOPT (or other optimized XSAVE instructions), if
* a processor implementation detects that an FPU state component is still
* (or is again) in its initialized state, it may clear the corresponding
* bit in the header.xfeatures field, and can skip the writeout of registers
* to the corresponding memory layout.
*
* This means that when the bit is zero, the state component might still contain
* some previous - non-initialized register state.
*
* Before writing xstate information to user-space we sanitize those components,
* to always ensure that the memory layout of a feature will be in the init state
* if the corresponding header bit is zero. This is to ensure that user-space doesn't
* see some stale state in the memory layout during signal handling, debugging etc.
*/
void fpstate_sanitize_xstate(struct fpu *fpu)
{
<------>struct fxregs_state *fx = &fpu->state.fxsave;
<------>int feature_bit;
<------>u64 xfeatures;
<------>if (!use_xsaveopt())
<------><------>return;
<------>xfeatures = fpu->state.xsave.header.xfeatures;
<------>/*
<------> * None of the feature bits are in init state. So nothing else
<------> * to do for us, as the memory layout is up to date.
<------> */
<------>if ((xfeatures & xfeatures_mask_all) == xfeatures_mask_all)
<------><------>return;
<------>/*
<------> * FP is in init state
<------> */
<------>if (!(xfeatures & XFEATURE_MASK_FP)) {
<------><------>fx->cwd = 0x37f;
<------><------>fx->swd = 0;
<------><------>fx->twd = 0;
<------><------>fx->fop = 0;
<------><------>fx->rip = 0;
<------><------>fx->rdp = 0;
<------><------>memset(&fx->st_space[0], 0, 128);
<------>}
<------>/*
<------> * SSE is in init state
<------> */
<------>if (!(xfeatures & XFEATURE_MASK_SSE))
<------><------>memset(&fx->xmm_space[0], 0, 256);
<------>/*
<------> * First two features are FPU and SSE, which above we handled
<------> * in a special way already:
<------> */
<------>feature_bit = 0x2;
<------>xfeatures = (xfeatures_mask_user() & ~xfeatures) >> 2;
<------>/*
<------> * Update all the remaining memory layouts according to their
<------> * standard xstate layout, if their header bit is in the init
<------> * state:
<------> */
<------>while (xfeatures) {
<------><------>if (xfeatures & 0x1) {
<------><------><------>int offset = xstate_comp_offsets[feature_bit];
<------><------><------>int size = xstate_sizes[feature_bit];
<------><------><------>memcpy((void *)fx + offset,
<------><------><------> (void *)&init_fpstate.xsave + offset,
<------><------><------> size);
<------><------>}
<------><------>xfeatures >>= 1;
<------><------>feature_bit++;
<------>}
}
/*
* Enable the extended processor state save/restore feature.
* Called once per CPU onlining.
*/
void fpu__init_cpu_xstate(void)
{
<------>u64 unsup_bits;
<------>if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask_all)
<------><------>return;
<------>/*
<------> * Unsupported supervisor xstates should not be found in
<------> * the xfeatures mask.
<------> */
<------>unsup_bits = xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_UNSUPPORTED;
<------>WARN_ONCE(unsup_bits, "x86/fpu: Found unsupported supervisor xstates: 0x%llx\n",
<------><------> unsup_bits);
<------>xfeatures_mask_all &= ~XFEATURE_MASK_SUPERVISOR_UNSUPPORTED;
<------>cr4_set_bits(X86_CR4_OSXSAVE);
<------>/*
<------> * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
<------> * managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user
<------> * states can be set here.
<------> */
<------>xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user());
<------>/*
<------> * MSR_IA32_XSS sets supervisor states managed by XSAVES.
<------> */
<------>if (boot_cpu_has(X86_FEATURE_XSAVES)) {
<------><------>wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
<------><------><------><------> xfeatures_mask_dynamic());
<------>}
}
static bool xfeature_enabled(enum xfeature xfeature)
{
<------>return xfeatures_mask_all & BIT_ULL(xfeature);
}
/*
* Record the offsets and sizes of various xstates contained
* in the XSAVE state memory layout.
*/
static void __init setup_xstate_features(void)
{
<------>u32 eax, ebx, ecx, edx, i;
<------>/* start at the beginnning of the "extended state" */
<------>unsigned int last_good_offset = offsetof(struct xregs_state,
<------><------><------><------><------><------> extended_state_area);
<------>/*
<------> * The FP xstates and SSE xstates are legacy states. They are always
<------> * in the fixed offsets in the xsave area in either compacted form
<------> * or standard form.
<------> */
<------>xstate_offsets[XFEATURE_FP] = 0;
<------>xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state,
<------><------><------><------><------><------> xmm_space);
<------>xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP];
<------>xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state,
<------><------><------><------><------><------> xmm_space);
<------>for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
<------><------>if (!xfeature_enabled(i))
<------><------><------>continue;
<------><------>cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
<------><------>xstate_sizes[i] = eax;
<------><------>/*
<------><------> * If an xfeature is supervisor state, the offset in EBX is
<------><------> * invalid, leave it to -1.
<------><------> */
<------><------>if (xfeature_is_supervisor(i))
<------><------><------>continue;
<------><------>xstate_offsets[i] = ebx;
<------><------>/*
<------><------> * In our xstate size checks, we assume that the highest-numbered
<------><------> * xstate feature has the highest offset in the buffer. Ensure
<------><------> * it does.
<------><------> */
<------><------>WARN_ONCE(last_good_offset > xstate_offsets[i],
<------><------><------> "x86/fpu: misordered xstate at %d\n", last_good_offset);
<------><------>last_good_offset = xstate_offsets[i];
<------>}
}
static void __init print_xstate_feature(u64 xstate_mask)
{
<------>const char *feature_name;
<------>if (cpu_has_xfeatures(xstate_mask, &feature_name))
<------><------>pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
}
/*
* Print out all the supported xstate features:
*/
static void __init print_xstate_features(void)
{
<------>print_xstate_feature(XFEATURE_MASK_FP);
<------>print_xstate_feature(XFEATURE_MASK_SSE);
<------>print_xstate_feature(XFEATURE_MASK_YMM);
<------>print_xstate_feature(XFEATURE_MASK_BNDREGS);
<------>print_xstate_feature(XFEATURE_MASK_BNDCSR);
<------>print_xstate_feature(XFEATURE_MASK_OPMASK);
<------>print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
<------>print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
<------>print_xstate_feature(XFEATURE_MASK_PKRU);
<------>print_xstate_feature(XFEATURE_MASK_PASID);
}
/*
* This check is important because it is easy to get XSTATE_*
* confused with XSTATE_BIT_*.
*/
#define CHECK_XFEATURE(nr) do { \
<------>WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \
<------>WARN_ON(nr >= XFEATURE_MAX); \
} while (0)
/*
* We could cache this like xstate_size[], but we only use
* it here, so it would be a waste of space.
*/
static int xfeature_is_aligned(int xfeature_nr)
{
<------>u32 eax, ebx, ecx, edx;
<------>CHECK_XFEATURE(xfeature_nr);
<------>if (!xfeature_enabled(xfeature_nr)) {
<------><------>WARN_ONCE(1, "Checking alignment of disabled xfeature %d\n",
<------><------><------> xfeature_nr);
<------><------>return 0;
<------>}
<------>cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
<------>/*
<------> * The value returned by ECX[1] indicates the alignment
<------> * of state component 'i' when the compacted format
<------> * of the extended region of an XSAVE area is used:
<------> */
<------>return !!(ecx & 2);
}
/*
* This function sets up offsets and sizes of all extended states in
* xsave area. This supports both standard format and compacted format
* of the xsave area.
*/
static void __init setup_xstate_comp_offsets(void)
{
<------>unsigned int next_offset;
<------>int i;
<------>/*
<------> * The FP xstates and SSE xstates are legacy states. They are always
<------> * in the fixed offsets in the xsave area in either compacted form
<------> * or standard form.
<------> */
<------>xstate_comp_offsets[XFEATURE_FP] = 0;
<------>xstate_comp_offsets[XFEATURE_SSE] = offsetof(struct fxregs_state,
<------><------><------><------><------><------> xmm_space);
<------>if (!boot_cpu_has(X86_FEATURE_XSAVES)) {
<------><------>for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
<------><------><------>if (xfeature_enabled(i))
<------><------><------><------>xstate_comp_offsets[i] = xstate_offsets[i];
<------><------>}
<------><------>return;
<------>}
<------>next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE;
<------>for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
<------><------>if (!xfeature_enabled(i))
<------><------><------>continue;
<------><------>if (xfeature_is_aligned(i))
<------><------><------>next_offset = ALIGN(next_offset, 64);
<------><------>xstate_comp_offsets[i] = next_offset;
<------><------>next_offset += xstate_sizes[i];
<------>}
}
/*
* Setup offsets of a supervisor-state-only XSAVES buffer:
*
* The offsets stored in xstate_comp_offsets[] only work for one specific
* value of the Requested Feature BitMap (RFBM). In cases where a different
* RFBM value is used, a different set of offsets is required. This set of
* offsets is for when RFBM=xfeatures_mask_supervisor().
*/
static void __init setup_supervisor_only_offsets(void)
{
<------>unsigned int next_offset;
<------>int i;
<------>next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE;
<------>for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
<------><------>if (!xfeature_enabled(i) || !xfeature_is_supervisor(i))
<------><------><------>continue;
<------><------>if (xfeature_is_aligned(i))
<------><------><------>next_offset = ALIGN(next_offset, 64);
<------><------>xstate_supervisor_only_offsets[i] = next_offset;
<------><------>next_offset += xstate_sizes[i];
<------>}
}
/*
* Print out xstate component offsets and sizes
*/
static void __init print_xstate_offset_size(void)
{
<------>int i;
<------>for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
<------><------>if (!xfeature_enabled(i))
<------><------><------>continue;
<------><------>pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
<------><------><------> i, xstate_comp_offsets[i], i, xstate_sizes[i]);
<------>}
}
/*
* All supported features have either init state all zeros or are
* handled in setup_init_fpu() individually. This is an explicit
* feature list and does not use XFEATURE_MASK*SUPPORTED to catch
* newly added supported features at build time and make people
* actually look at the init state for the new feature.
*/
#define XFEATURES_INIT_FPSTATE_HANDLED \
<------>(XFEATURE_MASK_FP | \
<------> XFEATURE_MASK_SSE | \
<------> XFEATURE_MASK_YMM | \
<------> XFEATURE_MASK_OPMASK | \
<------> XFEATURE_MASK_ZMM_Hi256 | \
<------> XFEATURE_MASK_Hi16_ZMM | \
<------> XFEATURE_MASK_PKRU | \
<------> XFEATURE_MASK_BNDREGS | \
<------> XFEATURE_MASK_BNDCSR | \
<------> XFEATURE_MASK_PASID)
/*
* setup the xstate image representing the init state
*/
static void __init setup_init_fpu_buf(void)
{
<------>static int on_boot_cpu __initdata = 1;
<------>BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED |
<------><------> XFEATURE_MASK_SUPERVISOR_SUPPORTED) !=
<------><------> XFEATURES_INIT_FPSTATE_HANDLED);
<------>WARN_ON_FPU(!on_boot_cpu);
<------>on_boot_cpu = 0;
<------>if (!boot_cpu_has(X86_FEATURE_XSAVE))
<------><------>return;
<------>setup_xstate_features();
<------>print_xstate_features();
<------>if (boot_cpu_has(X86_FEATURE_XSAVES))
<------><------>init_fpstate.xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT |
<------><------><------><------><------><------> xfeatures_mask_all;
<------>/*
<------> * Init all the features state with header.xfeatures being 0x0
<------> */
<------>copy_kernel_to_xregs_booting(&init_fpstate.xsave);
<------>/*
<------> * All components are now in init state. Read the state back so
<------> * that init_fpstate contains all non-zero init state. This only
<------> * works with XSAVE, but not with XSAVEOPT and XSAVES because
<------> * those use the init optimization which skips writing data for
<------> * components in init state.
<------> *
<------> * XSAVE could be used, but that would require to reshuffle the
<------> * data when XSAVES is available because XSAVES uses xstate
<------> * compaction. But doing so is a pointless exercise because most
<------> * components have an all zeros init state except for the legacy
<------> * ones (FP and SSE). Those can be saved with FXSAVE into the
<------> * legacy area. Adding new features requires to ensure that init
<------> * state is all zeroes or if not to add the necessary handling
<------> * here.
<------> */
<------>fxsave(&init_fpstate.fxsave);
}
static int xfeature_uncompacted_offset(int xfeature_nr)
{
<------>u32 eax, ebx, ecx, edx;
<------>/*
<------> * Only XSAVES supports supervisor states and it uses compacted
<------> * format. Checking a supervisor state's uncompacted offset is
<------> * an error.
<------> */
<------>if (XFEATURE_MASK_SUPERVISOR_ALL & BIT_ULL(xfeature_nr)) {
<------><------>WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr);
<------><------>return -1;
<------>}
<------>CHECK_XFEATURE(xfeature_nr);
<------>cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
<------>return ebx;
}
int xfeature_size(int xfeature_nr)
{
<------>u32 eax, ebx, ecx, edx;
<------>CHECK_XFEATURE(xfeature_nr);
<------>cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
<------>return eax;
}
/*
* 'XSAVES' implies two different things:
* 1. saving of supervisor/system state
* 2. using the compacted format
*
* Use this function when dealing with the compacted format so
* that it is obvious which aspect of 'XSAVES' is being handled
* by the calling code.
*/
int using_compacted_format(void)
{
<------>return boot_cpu_has(X86_FEATURE_XSAVES);
}
/* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
int validate_user_xstate_header(const struct xstate_header *hdr)
{
<------>/* No unknown or supervisor features may be set */
<------>if (hdr->xfeatures & ~xfeatures_mask_user())
<------><------>return -EINVAL;
<------>/* Userspace must use the uncompacted format */
<------>if (hdr->xcomp_bv)
<------><------>return -EINVAL;
<------>/*
<------> * If 'reserved' is shrunken to add a new field, make sure to validate
<------> * that new field here!
<------> */
<------>BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
<------>/* No reserved bits may be set */
<------>if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
<------><------>return -EINVAL;
<------>return 0;
}
static void __xstate_dump_leaves(void)
{
<------>int i;
<------>u32 eax, ebx, ecx, edx;
<------>static int should_dump = 1;
<------>if (!should_dump)
<------><------>return;
<------>should_dump = 0;
<------>/*
<------> * Dump out a few leaves past the ones that we support
<------> * just in case there are some goodies up there
<------> */
<------>for (i = 0; i < XFEATURE_MAX + 10; i++) {
<------><------>cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
<------><------>pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
<------><------><------>XSTATE_CPUID, i, eax, ebx, ecx, edx);
<------>}
}
#define XSTATE_WARN_ON(x) do { \
<------>if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) { \
<------><------>__xstate_dump_leaves(); \
<------>} \
} while (0)
#define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \
<------>if ((nr == nr_macro) && \
<------> WARN_ONCE(sz != sizeof(__struct), \
<------><------>"%s: struct is %zu bytes, cpu state %d bytes\n", \
<------><------>__stringify(nr_macro), sizeof(__struct), sz)) { \
<------><------>__xstate_dump_leaves(); \
<------>} \
} while (0)
/*
* We have a C struct for each 'xstate'. We need to ensure
* that our software representation matches what the CPU
* tells us about the state's size.
*/
static void check_xstate_against_struct(int nr)
{
<------>/*
<------> * Ask the CPU for the size of the state.
<------> */
<------>int sz = xfeature_size(nr);
<------>/*
<------> * Match each CPU state with the corresponding software
<------> * structure.
<------> */
<------>XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct);
<------>XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state);
<------>XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state);
<------>XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state);
<------>XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
<------>XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state);
<------>XCHECK_SZ(sz, nr, XFEATURE_PKRU, struct pkru_state);
<------>XCHECK_SZ(sz, nr, XFEATURE_PASID, struct ia32_pasid_state);
<------>/*
<------> * Make *SURE* to add any feature numbers in below if
<------> * there are "holes" in the xsave state component
<------> * numbers.
<------> */
<------>if ((nr < XFEATURE_YMM) ||
<------> (nr >= XFEATURE_MAX) ||
<------> (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR) ||
<------> ((nr >= XFEATURE_RSRVD_COMP_11) && (nr <= XFEATURE_LBR))) {
<------><------>WARN_ONCE(1, "no structure for xstate: %d\n", nr);
<------><------>XSTATE_WARN_ON(1);
<------>}
}
/*
* This essentially double-checks what the cpu told us about
* how large the XSAVE buffer needs to be. We are recalculating
* it to be safe.
*
* Dynamic XSAVE features allocate their own buffers and are not
* covered by these checks. Only the size of the buffer for task->fpu
* is checked here.
*/
static void do_extra_xstate_size_checks(void)
{
<------>int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
<------>int i;
<------>for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
<------><------>if (!xfeature_enabled(i))
<------><------><------>continue;
<------><------>check_xstate_against_struct(i);
<------><------>/*
<------><------> * Supervisor state components can be managed only by
<------><------> * XSAVES, which is compacted-format only.
<------><------> */
<------><------>if (!using_compacted_format())
<------><------><------>XSTATE_WARN_ON(xfeature_is_supervisor(i));
<------><------>/* Align from the end of the previous feature */
<------><------>if (xfeature_is_aligned(i))
<------><------><------>paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
<------><------>/*
<------><------> * The offset of a given state in the non-compacted
<------><------> * format is given to us in a CPUID leaf. We check
<------><------> * them for being ordered (increasing offsets) in
<------><------> * setup_xstate_features().
<------><------> */
<------><------>if (!using_compacted_format())
<------><------><------>paranoid_xstate_size = xfeature_uncompacted_offset(i);
<------><------>/*
<------><------> * The compacted-format offset always depends on where
<------><------> * the previous state ended.
<------><------> */
<------><------>paranoid_xstate_size += xfeature_size(i);
<------>}
<------>XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size);
}
/*
* Get total size of enabled xstates in XCR0 | IA32_XSS.
*
* Note the SDM's wording here. "sub-function 0" only enumerates
* the size of the *user* states. If we use it to size a buffer
* that we use 'XSAVES' on, we could potentially overflow the
* buffer because 'XSAVES' saves system states too.
*/
static unsigned int __init get_xsaves_size(void)
{
<------>unsigned int eax, ebx, ecx, edx;
<------>/*
<------> * - CPUID function 0DH, sub-function 1:
<------> * EBX enumerates the size (in bytes) required by
<------> * the XSAVES instruction for an XSAVE area
<------> * containing all the state components
<------> * corresponding to bits currently set in
<------> * XCR0 | IA32_XSS.
<------> */
<------>cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
<------>return ebx;
}
/*
* Get the total size of the enabled xstates without the dynamic supervisor
* features.
*/
static unsigned int __init get_xsaves_size_no_dynamic(void)
{
<------>u64 mask = xfeatures_mask_dynamic();
<------>unsigned int size;
<------>if (!mask)
<------><------>return get_xsaves_size();
<------>/* Disable dynamic features. */
<------>wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
<------>/*
<------> * Ask the hardware what size is required of the buffer.
<------> * This is the size required for the task->fpu buffer.
<------> */
<------>size = get_xsaves_size();
<------>/* Re-enable dynamic features so XSAVES will work on them again. */
<------>wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask);
<------>return size;
}
static unsigned int __init get_xsave_size(void)
{
<------>unsigned int eax, ebx, ecx, edx;
<------>/*
<------> * - CPUID function 0DH, sub-function 0:
<------> * EBX enumerates the size (in bytes) required by
<------> * the XSAVE instruction for an XSAVE area
<------> * containing all the *user* state components
<------> * corresponding to bits currently set in XCR0.
<------> */
<------>cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
<------>return ebx;
}
/*
* Will the runtime-enumerated 'xstate_size' fit in the init
* task's statically-allocated buffer?
*/
static bool is_supported_xstate_size(unsigned int test_xstate_size)
{
<------>if (test_xstate_size <= sizeof(union fpregs_state))
<------><------>return true;
<------>pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
<------><------><------>sizeof(union fpregs_state), test_xstate_size);
<------>return false;
}
static int __init init_xstate_size(void)
{
<------>/* Recompute the context size for enabled features: */
<------>unsigned int possible_xstate_size;
<------>unsigned int xsave_size;
<------>xsave_size = get_xsave_size();
<------>if (boot_cpu_has(X86_FEATURE_XSAVES))
<------><------>possible_xstate_size = get_xsaves_size_no_dynamic();
<------>else
<------><------>possible_xstate_size = xsave_size;
<------>/* Ensure we have the space to store all enabled: */
<------>if (!is_supported_xstate_size(possible_xstate_size))
<------><------>return -EINVAL;
<------>/*
<------> * The size is OK, we are definitely going to use xsave,
<------> * make it known to the world that we need more space.
<------> */
<------>fpu_kernel_xstate_size = possible_xstate_size;
<------>do_extra_xstate_size_checks();
<------>/*
<------> * User space is always in standard format.
<------> */
<------>fpu_user_xstate_size = xsave_size;
<------>return 0;
}
/*
* We enabled the XSAVE hardware, but something went wrong and
* we can not use it. Disable it.
*/
static void fpu__init_disable_system_xstate(void)
{
<------>xfeatures_mask_all = 0;
<------>cr4_clear_bits(X86_CR4_OSXSAVE);
<------>setup_clear_cpu_cap(X86_FEATURE_XSAVE);
}
/*
* Enable and initialize the xsave feature.
* Called once per system bootup.
*/
void __init fpu__init_system_xstate(void)
{
<------>unsigned int eax, ebx, ecx, edx;
<------>static int on_boot_cpu __initdata = 1;
<------>int err;
<------>int i;
<------>WARN_ON_FPU(!on_boot_cpu);
<------>on_boot_cpu = 0;
<------>if (!boot_cpu_has(X86_FEATURE_FPU)) {
<------><------>pr_info("x86/fpu: No FPU detected\n");
<------><------>return;
<------>}
<------>if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
<------><------>pr_info("x86/fpu: x87 FPU will use %s\n",
<------><------><------>boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
<------><------>return;
<------>}
<------>if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
<------><------>WARN_ON_FPU(1);
<------><------>return;
<------>}
<------>/*
<------> * Find user xstates supported by the processor.
<------> */
<------>cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
<------>xfeatures_mask_all = eax + ((u64)edx << 32);
<------>/*
<------> * Find supervisor xstates supported by the processor.
<------> */
<------>cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
<------>xfeatures_mask_all |= ecx + ((u64)edx << 32);
<------>if ((xfeatures_mask_user() & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
<------><------>/*
<------><------> * This indicates that something really unexpected happened
<------><------> * with the enumeration. Disable XSAVE and try to continue
<------><------> * booting without it. This is too early to BUG().
<------><------> */
<------><------>pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
<------><------> xfeatures_mask_all);
<------><------>goto out_disable;
<------>}
<------>/*
<------> * Clear XSAVE features that are disabled in the normal CPUID.
<------> */
<------>for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
<------><------>if (!boot_cpu_has(xsave_cpuid_features[i]))
<------><------><------>xfeatures_mask_all &= ~BIT_ULL(i);
<------>}
<------>xfeatures_mask_all &= fpu__get_supported_xfeatures_mask();
<------>/* Enable xstate instructions to be able to continue with initialization: */
<------>fpu__init_cpu_xstate();
<------>err = init_xstate_size();
<------>if (err)
<------><------>goto out_disable;
<------>/*
<------> * Update info used for ptrace frames; use standard-format size and no
<------> * supervisor xstates:
<------> */
<------>update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask_user());
<------>fpu__init_prepare_fx_sw_frame();
<------>setup_init_fpu_buf();
<------>setup_xstate_comp_offsets();
<------>setup_supervisor_only_offsets();
<------>print_xstate_offset_size();
<------>pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
<------><------>xfeatures_mask_all,
<------><------>fpu_kernel_xstate_size,
<------><------>boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
<------>return;
out_disable:
<------>/* something went wrong, try to boot without any XSAVE support */
<------>fpu__init_disable_system_xstate();
}
/*
* Restore minimal FPU state after suspend:
*/
void fpu__resume_cpu(void)
{
<------>/*
<------> * Restore XCR0 on xsave capable CPUs:
<------> */
<------>if (boot_cpu_has(X86_FEATURE_XSAVE))
<------><------>xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user());
<------>/*
<------> * Restore IA32_XSS. The same CPUID bit enumerates support
<------> * of XSAVES and MSR_IA32_XSS.
<------> */
<------>if (boot_cpu_has(X86_FEATURE_XSAVES)) {
<------><------>wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
<------><------><------><------> xfeatures_mask_dynamic());
<------>}
}
/*
* Given an xstate feature nr, calculate where in the xsave
* buffer the state is. Callers should ensure that the buffer
* is valid.
*/
static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
{
<------>if (!xfeature_enabled(xfeature_nr)) {
<------><------>WARN_ON_FPU(1);
<------><------>return NULL;
<------>}
<------>return (void *)xsave + xstate_comp_offsets[xfeature_nr];
}
/*
* Given the xsave area and a state inside, this function returns the
* address of the state.
*
* This is the API that is called to get xstate address in either
* standard format or compacted format of xsave area.
*
* Note that if there is no data for the field in the xsave buffer
* this will return NULL.
*
* Inputs:
* xstate: the thread's storage area for all FPU data
* xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
* XFEATURE_SSE, etc...)
* Output:
* address of the state in the xsave area, or NULL if the
* field is not present in the xsave buffer.
*/
void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
{
<------>/*
<------> * Do we even *have* xsave state?
<------> */
<------>if (!boot_cpu_has(X86_FEATURE_XSAVE))
<------><------>return NULL;
<------>/*
<------> * We should not ever be requesting features that we
<------> * have not enabled.
<------> */
<------>WARN_ONCE(!(xfeatures_mask_all & BIT_ULL(xfeature_nr)),
<------><------> "get of unsupported state");
<------>/*
<------> * This assumes the last 'xsave*' instruction to
<------> * have requested that 'xfeature_nr' be saved.
<------> * If it did not, we might be seeing and old value
<------> * of the field in the buffer.
<------> *
<------> * This can happen because the last 'xsave' did not
<------> * request that this feature be saved (unlikely)
<------> * or because the "init optimization" caused it
<------> * to not be saved.
<------> */
<------>if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
<------><------>return NULL;
<------>return __raw_xsave_addr(xsave, xfeature_nr);
}
EXPORT_SYMBOL_GPL(get_xsave_addr);
/*
* This wraps up the common operations that need to occur when retrieving
* data from xsave state. It first ensures that the current task was
* using the FPU and retrieves the data in to a buffer. It then calculates
* the offset of the requested field in the buffer.
*
* This function is safe to call whether the FPU is in use or not.
*
* Note that this only works on the current task.
*
* Inputs:
* @xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
* XFEATURE_SSE, etc...)
* Output:
* address of the state in the xsave area or NULL if the state
* is not present or is in its 'init state'.
*/
const void *get_xsave_field_ptr(int xfeature_nr)
{
<------>struct fpu *fpu = &current->thread.fpu;
<------>/*
<------> * fpu__save() takes the CPU's xstate registers
<------> * and saves them off to the 'fpu memory buffer.
<------> */
<------>fpu__save(fpu);
<------>return get_xsave_addr(&fpu->state.xsave, xfeature_nr);
}
#ifdef CONFIG_ARCH_HAS_PKEYS
/*
* This will go out and modify PKRU register to set the access
* rights for @pkey to @init_val.
*/
int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
<------><------>unsigned long init_val)
{
<------>u32 old_pkru;
<------>int pkey_shift = (pkey * PKRU_BITS_PER_PKEY);
<------>u32 new_pkru_bits = 0;
<------>/*
<------> * This check implies XSAVE support. OSPKE only gets
<------> * set if we enable XSAVE and we enable PKU in XCR0.
<------> */
<------>if (!boot_cpu_has(X86_FEATURE_OSPKE))
<------><------>return -EINVAL;
<------>/*
<------> * This code should only be called with valid 'pkey'
<------> * values originating from in-kernel users. Complain
<------> * if a bad value is observed.
<------> */
<------>WARN_ON_ONCE(pkey >= arch_max_pkey());
<------>/* Set the bits we need in PKRU: */
<------>if (init_val & PKEY_DISABLE_ACCESS)
<------><------>new_pkru_bits |= PKRU_AD_BIT;
<------>if (init_val & PKEY_DISABLE_WRITE)
<------><------>new_pkru_bits |= PKRU_WD_BIT;
<------>/* Shift the bits in to the correct place in PKRU for pkey: */
<------>new_pkru_bits <<= pkey_shift;
<------>/* Get old PKRU and mask off any old bits in place: */
<------>old_pkru = read_pkru();
<------>old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
<------>/* Write old part along with new part: */
<------>write_pkru(old_pkru | new_pkru_bits);
<------>return 0;
}
#endif /* ! CONFIG_ARCH_HAS_PKEYS */
/*
* Weird legacy quirk: SSE and YMM states store information in the
* MXCSR and MXCSR_FLAGS fields of the FP area. That means if the FP
* area is marked as unused in the xfeatures header, we need to copy
* MXCSR and MXCSR_FLAGS if either SSE or YMM are in use.
*/
static inline bool xfeatures_mxcsr_quirk(u64 xfeatures)
{
<------>if (!(xfeatures & (XFEATURE_MASK_SSE|XFEATURE_MASK_YMM)))
<------><------>return false;
<------>if (xfeatures & XFEATURE_MASK_FP)
<------><------>return false;
<------>return true;
}
static void copy_feature(bool from_xstate, struct membuf *to, void *xstate,
<------><------><------> void *init_xstate, unsigned int size)
{
<------>membuf_write(to, from_xstate ? xstate : init_xstate, size);
}
/*
* Convert from kernel XSAVES compacted format to standard format and copy
* to a kernel-space ptrace buffer.
*
* It supports partial copy but pos always starts from zero. This is called
* from xstateregs_get() and there we check the CPU has XSAVES.
*/
void copy_xstate_to_kernel(struct membuf to, struct xregs_state *xsave)
{
<------>const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr);
<------>struct xregs_state *xinit = &init_fpstate.xsave;
<------>struct xstate_header header;
<------>unsigned int zerofrom;
<------>int i;
<------>/*
<------> * The destination is a ptrace buffer; we put in only user xstates:
<------> */
<------>memset(&header, 0, sizeof(header));
<------>header.xfeatures = xsave->header.xfeatures;
<------>header.xfeatures &= xfeatures_mask_user();
<------>/* Copy FP state up to MXCSR */
<------>copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387,
<------><------> &xinit->i387, off_mxcsr);
<------>/* Copy MXCSR when SSE or YMM are set in the feature mask */
<------>copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM),
<------><------> &to, &xsave->i387.mxcsr, &xinit->i387.mxcsr,
<------><------> MXCSR_AND_FLAGS_SIZE);
<------>/* Copy the remaining FP state */
<------>copy_feature(header.xfeatures & XFEATURE_MASK_FP,
<------><------> &to, &xsave->i387.st_space, &xinit->i387.st_space,
<------><------> sizeof(xsave->i387.st_space));
<------>/* Copy the SSE state - shared with YMM, but independently managed */
<------>copy_feature(header.xfeatures & XFEATURE_MASK_SSE,
<------><------> &to, &xsave->i387.xmm_space, &xinit->i387.xmm_space,
<------><------> sizeof(xsave->i387.xmm_space));
<------>/* Zero the padding area */
<------>membuf_zero(&to, sizeof(xsave->i387.padding));
<------>/* Copy xsave->i387.sw_reserved */
<------>membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved));
<------>/* Copy the user space relevant state of @xsave->header */
<------>membuf_write(&to, &header, sizeof(header));
<------>zerofrom = offsetof(struct xregs_state, extended_state_area);
<------>for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
<------><------>/*
<------><------> * The ptrace buffer is in non-compacted XSAVE format.
<------><------> * In non-compacted format disabled features still occupy
<------><------> * state space, but there is no state to copy from in the
<------><------> * compacted init_fpstate. The gap tracking will zero this
<------><------> * later.
<------><------> */
<------><------>if (!(xfeatures_mask_user() & BIT_ULL(i)))
<------><------><------>continue;
<------><------>/*
<------><------> * If there was a feature or alignment gap, zero the space
<------><------> * in the destination buffer.
<------><------> */
<------><------>if (zerofrom < xstate_offsets[i])
<------><------><------>membuf_zero(&to, xstate_offsets[i] - zerofrom);
<------><------>copy_feature(header.xfeatures & BIT_ULL(i), &to,
<------><------><------> __raw_xsave_addr(xsave, i),
<------><------><------> __raw_xsave_addr(xinit, i),
<------><------><------> xstate_sizes[i]);
<------><------>/*
<------><------> * Keep track of the last copied state in the non-compacted
<------><------> * target buffer for gap zeroing.
<------><------> */
<------><------>zerofrom = xstate_offsets[i] + xstate_sizes[i];
<------>}
<------>if (to.left)
<------><------>membuf_zero(&to, to.left);
}
/*
* Convert from a ptrace standard-format kernel buffer to kernel XSAVES format
* and copy to the target thread. This is called from xstateregs_set().
*/
int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf)
{
<------>unsigned int offset, size;
<------>int i;
<------>struct xstate_header hdr;
<------>offset = offsetof(struct xregs_state, header);
<------>size = sizeof(hdr);
<------>memcpy(&hdr, kbuf + offset, size);
<------>if (validate_user_xstate_header(&hdr))
<------><------>return -EINVAL;
<------>for (i = 0; i < XFEATURE_MAX; i++) {
<------><------>u64 mask = ((u64)1 << i);
<------><------>if (hdr.xfeatures & mask) {
<------><------><------>void *dst = __raw_xsave_addr(xsave, i);
<------><------><------>offset = xstate_offsets[i];
<------><------><------>size = xstate_sizes[i];
<------><------><------>memcpy(dst, kbuf + offset, size);
<------><------>}
<------>}
<------>if (xfeatures_mxcsr_quirk(hdr.xfeatures)) {
<------><------>offset = offsetof(struct fxregs_state, mxcsr);
<------><------>size = MXCSR_AND_FLAGS_SIZE;
<------><------>memcpy(&xsave->i387.mxcsr, kbuf + offset, size);
<------>}
<------>/*
<------> * The state that came in from userspace was user-state only.
<------> * Mask all the user states out of 'xfeatures':
<------> */
<------>xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
<------>/*
<------> * Add back in the features that came in from userspace:
<------> */
<------>xsave->header.xfeatures |= hdr.xfeatures;
<------>return 0;
}
/*
* Convert from a ptrace or sigreturn standard-format user-space buffer to
* kernel XSAVES format and copy to the target thread. This is called from
* xstateregs_set(), as well as potentially from the sigreturn() and
* rt_sigreturn() system calls.
*/
int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf)
{
<------>unsigned int offset, size;
<------>int i;
<------>struct xstate_header hdr;
<------>offset = offsetof(struct xregs_state, header);
<------>size = sizeof(hdr);
<------>if (__copy_from_user(&hdr, ubuf + offset, size))
<------><------>return -EFAULT;
<------>if (validate_user_xstate_header(&hdr))
<------><------>return -EINVAL;
<------>for (i = 0; i < XFEATURE_MAX; i++) {
<------><------>u64 mask = ((u64)1 << i);
<------><------>if (hdr.xfeatures & mask) {
<------><------><------>void *dst = __raw_xsave_addr(xsave, i);
<------><------><------>offset = xstate_offsets[i];
<------><------><------>size = xstate_sizes[i];
<------><------><------>if (__copy_from_user(dst, ubuf + offset, size))
<------><------><------><------>return -EFAULT;
<------><------>}
<------>}
<------>if (xfeatures_mxcsr_quirk(hdr.xfeatures)) {
<------><------>offset = offsetof(struct fxregs_state, mxcsr);
<------><------>size = MXCSR_AND_FLAGS_SIZE;
<------><------>if (__copy_from_user(&xsave->i387.mxcsr, ubuf + offset, size))
<------><------><------>return -EFAULT;
<------>}
<------>/*
<------> * The state that came in from userspace was user-state only.
<------> * Mask all the user states out of 'xfeatures':
<------> */
<------>xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
<------>/*
<------> * Add back in the features that came in from userspace:
<------> */
<------>xsave->header.xfeatures |= hdr.xfeatures;
<------>return 0;
}
/*
* Save only supervisor states to the kernel buffer. This blows away all
* old states, and is intended to be used only in __fpu__restore_sig(), where
* user states are restored from the user buffer.
*/
void copy_supervisor_to_kernel(struct xregs_state *xstate)
{
<------>struct xstate_header *header;
<------>u64 max_bit, min_bit;
<------>u32 lmask, hmask;
<------>int err, i;
<------>if (WARN_ON(!boot_cpu_has(X86_FEATURE_XSAVES)))
<------><------>return;
<------>if (!xfeatures_mask_supervisor())
<------><------>return;
<------>max_bit = __fls(xfeatures_mask_supervisor());
<------>min_bit = __ffs(xfeatures_mask_supervisor());
<------>lmask = xfeatures_mask_supervisor();
<------>hmask = xfeatures_mask_supervisor() >> 32;
<------>XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
<------>/* We should never fault when copying to a kernel buffer: */
<------>if (WARN_ON_FPU(err))
<------><------>return;
<------>/*
<------> * At this point, the buffer has only supervisor states and must be
<------> * converted back to normal kernel format.
<------> */
<------>header = &xstate->header;
<------>header->xcomp_bv |= xfeatures_mask_all;
<------>/*
<------> * This only moves states up in the buffer. Start with
<------> * the last state and move backwards so that states are
<------> * not overwritten until after they are moved. Note:
<------> * memmove() allows overlapping src/dst buffers.
<------> */
<------>for (i = max_bit; i >= min_bit; i--) {
<------><------>u8 *xbuf = (u8 *)xstate;
<------><------>if (!((header->xfeatures >> i) & 1))
<------><------><------>continue;
<------><------>/* Move xfeature 'i' into its normal location */
<------><------>memmove(xbuf + xstate_comp_offsets[i],
<------><------><------>xbuf + xstate_supervisor_only_offsets[i],
<------><------><------>xstate_sizes[i]);
<------>}
}
/**
* copy_dynamic_supervisor_to_kernel() - Save dynamic supervisor states to
* an xsave area
* @xstate: A pointer to an xsave area
* @mask: Represent the dynamic supervisor features saved into the xsave area
*
* Only the dynamic supervisor states sets in the mask are saved into the xsave
* area (See the comment in XFEATURE_MASK_DYNAMIC for the details of dynamic
* supervisor feature). Besides the dynamic supervisor states, the legacy
* region and XSAVE header are also saved into the xsave area. The supervisor
* features in the XFEATURE_MASK_SUPERVISOR_SUPPORTED and
* XFEATURE_MASK_SUPERVISOR_UNSUPPORTED are not saved.
*
* The xsave area must be 64-bytes aligned.
*/
void copy_dynamic_supervisor_to_kernel(struct xregs_state *xstate, u64 mask)
{
<------>u64 dynamic_mask = xfeatures_mask_dynamic() & mask;
<------>u32 lmask, hmask;
<------>int err;
<------>if (WARN_ON_FPU(!boot_cpu_has(X86_FEATURE_XSAVES)))
<------><------>return;
<------>if (WARN_ON_FPU(!dynamic_mask))
<------><------>return;
<------>lmask = dynamic_mask;
<------>hmask = dynamic_mask >> 32;
<------>XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
<------>/* Should never fault when copying to a kernel buffer */
<------>WARN_ON_FPU(err);
}
/**
* copy_kernel_to_dynamic_supervisor() - Restore dynamic supervisor states from
* an xsave area
* @xstate: A pointer to an xsave area
* @mask: Represent the dynamic supervisor features restored from the xsave area
*
* Only the dynamic supervisor states sets in the mask are restored from the
* xsave area (See the comment in XFEATURE_MASK_DYNAMIC for the details of
* dynamic supervisor feature). Besides the dynamic supervisor states, the
* legacy region and XSAVE header are also restored from the xsave area. The
* supervisor features in the XFEATURE_MASK_SUPERVISOR_SUPPORTED and
* XFEATURE_MASK_SUPERVISOR_UNSUPPORTED are not restored.
*
* The xsave area must be 64-bytes aligned.
*/
void copy_kernel_to_dynamic_supervisor(struct xregs_state *xstate, u64 mask)
{
<------>u64 dynamic_mask = xfeatures_mask_dynamic() & mask;
<------>u32 lmask, hmask;
<------>int err;
<------>if (WARN_ON_FPU(!boot_cpu_has(X86_FEATURE_XSAVES)))
<------><------>return;
<------>if (WARN_ON_FPU(!dynamic_mask))
<------><------>return;
<------>lmask = dynamic_mask;
<------>hmask = dynamic_mask >> 32;
<------>XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
<------>/* Should never fault when copying from a kernel buffer */
<------>WARN_ON_FPU(err);
}
#ifdef CONFIG_PROC_PID_ARCH_STATUS
/*
* Report the amount of time elapsed in millisecond since last AVX512
* use in the task.
*/
static void avx512_status(struct seq_file *m, struct task_struct *task)
{
<------>unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
<------>long delta;
<------>if (!timestamp) {
<------><------>/*
<------><------> * Report -1 if no AVX512 usage
<------><------> */
<------><------>delta = -1;
<------>} else {
<------><------>delta = (long)(jiffies - timestamp);
<------><------>/*
<------><------> * Cap to LONG_MAX if time difference > LONG_MAX
<------><------> */
<------><------>if (delta < 0)
<------><------><------>delta = LONG_MAX;
<------><------>delta = jiffies_to_msecs(delta);
<------>}
<------>seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta);
<------>seq_putc(m, '\n');
}
/*
* Report architecture specific information
*/
int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
<------><------><------>struct pid *pid, struct task_struct *task)
{
<------>/*
<------> * Report AVX512 state if the processor and build option supported.
<------> */
<------>if (cpu_feature_enabled(X86_FEATURE_AVX512F))
<------><------>avx512_status(m, task);
<------>return 0;
}
#endif /* CONFIG_PROC_PID_ARCH_STATUS */