^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * Routines to identify additional cpu features that are scattered in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * cpuid space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <asm/memtype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <asm/apic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <asm/processor.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include "cpu.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) struct cpuid_bit {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) u16 feature;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) u8 bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) u32 level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) u32 sub_leaf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * Please keep the leaf sorted by cpuid_bit.level for faster search.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * X86_FEATURE_MBA is supported by both Intel and AMD. But the CPUID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * levels are different and there is a separate entry for each.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) static const struct cpuid_bit cpuid_bits[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) { X86_FEATURE_APERFMPERF, CPUID_ECX, 0, 0x00000006, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) { X86_FEATURE_EPB, CPUID_ECX, 3, 0x00000006, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) { X86_FEATURE_CQM_LLC, CPUID_EDX, 1, 0x0000000f, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) { X86_FEATURE_CQM_OCCUP_LLC, CPUID_EDX, 0, 0x0000000f, 1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) { X86_FEATURE_CQM_MBM_TOTAL, CPUID_EDX, 1, 0x0000000f, 1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) { X86_FEATURE_CQM_MBM_LOCAL, CPUID_EDX, 2, 0x0000000f, 1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) { X86_FEATURE_CAT_L3, CPUID_EBX, 1, 0x00000010, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) { X86_FEATURE_CAT_L2, CPUID_EBX, 2, 0x00000010, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) { X86_FEATURE_CDP_L3, CPUID_ECX, 2, 0x00000010, 1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) { X86_FEATURE_CDP_L2, CPUID_ECX, 2, 0x00000010, 2 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) { X86_FEATURE_MBA, CPUID_EBX, 3, 0x00000010, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) { X86_FEATURE_PER_THREAD_MBA, CPUID_ECX, 0, 0x00000010, 3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) { X86_FEATURE_HW_PSTATE, CPUID_EDX, 7, 0x80000007, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) { X86_FEATURE_CPB, CPUID_EDX, 9, 0x80000007, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) { X86_FEATURE_PROC_FEEDBACK, CPUID_EDX, 11, 0x80000007, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) { X86_FEATURE_MBA, CPUID_EBX, 6, 0x80000008, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) { X86_FEATURE_SME, CPUID_EAX, 0, 0x8000001f, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) { X86_FEATURE_SEV, CPUID_EAX, 1, 0x8000001f, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) { X86_FEATURE_SEV_ES, CPUID_EAX, 3, 0x8000001f, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) { X86_FEATURE_SME_COHERENT, CPUID_EAX, 10, 0x8000001f, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) { 0, 0, 0, 0, 0 }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) void init_scattered_cpuid_features(struct cpuinfo_x86 *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) u32 max_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) u32 regs[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) const struct cpuid_bit *cb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) for (cb = cpuid_bits; cb->feature; cb++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) /* Verify that the level is valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) max_level = cpuid_eax(cb->level & 0xffff0000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) if (max_level < cb->level ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) max_level > (cb->level | 0xffff))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) cpuid_count(cb->level, cb->sub_leaf, ®s[CPUID_EAX],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) ®s[CPUID_EBX], ®s[CPUID_ECX],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) ®s[CPUID_EDX]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) if (regs[cb->reg] & (1 << cb->bit))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) set_cpu_cap(c, cb->feature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) }