Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Thermal throttle event support code (such as syslog messaging and rate
* limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c).
*
* This allows consistent reporting of CPU thermal throttle events.
*
* Maintains a counter in /sys that keeps track of the number of thermal
* events, such that the user knows how bad the thermal problem might be
* (since the logging to syslog is rate limited).
*
* Author: Dmitriy Zavin (dmitriyz@google.com)
*
* Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c.
* Inspired by Ross Biro's and Al Borchers' counter code.
*/
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <asm/processor.h>
#include <asm/traps.h>
#include <asm/apic.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/trace/irq_vectors.h>
#include "internal.h"
/* How long to wait between reporting thermal events */
#define CHECK_INTERVAL (300 * HZ)
#define THERMAL_THROTTLING_EVENT 0
#define POWER_LIMIT_EVENT 1
/**
* struct _thermal_state - Represent the current thermal event state
* @next_check: Stores the next timestamp, when it is allowed
* to log the next warning message.
* @last_interrupt_time: Stores the timestamp for the last threshold
* high event.
* @therm_work: Delayed workqueue structure
* @count: Stores the current running count for thermal
* or power threshold interrupts.
* @last_count: Stores the previous running count for thermal
* or power threshold interrupts.
* @max_time_ms: This shows the maximum amount of time CPU was
* in throttled state for a single thermal
* threshold high to low state.
* @total_time_ms: This is a cumulative time during which CPU was
* in the throttled state.
* @rate_control_active: Set when a throttling message is logged.
* This is used for the purpose of rate-control.
* @new_event: Stores the last high/low status of the
* THERM_STATUS_PROCHOT or
* THERM_STATUS_POWER_LIMIT.
* @level: Stores whether this _thermal_state instance is
* for a CORE level or for PACKAGE level.
* @sample_index: Index for storing the next sample in the buffer
* temp_samples[].
* @sample_count: Total number of samples collected in the buffer
* temp_samples[].
* @average: The last moving average of temperature samples
* @baseline_temp: Temperature at which thermal threshold high
* interrupt was generated.
* @temp_samples: Storage for temperature samples to calculate
* moving average.
*
* This structure is used to represent data related to thermal state for a CPU.
* There is a separate storage for core and package level for each CPU.
*/
struct _thermal_state {
<------>u64 next_check;
<------>u64 last_interrupt_time;
<------>struct delayed_work therm_work;
<------>unsigned long count;
<------>unsigned long last_count;
<------>unsigned long max_time_ms;
<------>unsigned long total_time_ms;
<------>bool rate_control_active;
<------>bool new_event;
<------>u8 level;
<------>u8 sample_index;
<------>u8 sample_count;
<------>u8 average;
<------>u8 baseline_temp;
<------>u8 temp_samples[3];
};
struct thermal_state {
<------>struct _thermal_state core_throttle;
<------>struct _thermal_state core_power_limit;
<------>struct _thermal_state package_throttle;
<------>struct _thermal_state package_power_limit;
<------>struct _thermal_state core_thresh0;
<------>struct _thermal_state core_thresh1;
<------>struct _thermal_state pkg_thresh0;
<------>struct _thermal_state pkg_thresh1;
};
/* Callback to handle core threshold interrupts */
int (*platform_thermal_notify)(__u64 msr_val);
EXPORT_SYMBOL(platform_thermal_notify);
/* Callback to handle core package threshold_interrupts */
int (*platform_thermal_package_notify)(__u64 msr_val);
EXPORT_SYMBOL_GPL(platform_thermal_package_notify);
/* Callback support of rate control, return true, if
* callback has rate control */
bool (*platform_thermal_package_rate_control)(void);
EXPORT_SYMBOL_GPL(platform_thermal_package_rate_control);
static DEFINE_PER_CPU(struct thermal_state, thermal_state);
static atomic_t therm_throt_en = ATOMIC_INIT(0);
static u32 lvtthmr_init __read_mostly;
#ifdef CONFIG_SYSFS
#define define_therm_throt_device_one_ro(_name) \
<------>static DEVICE_ATTR(_name, 0444, \
<------><------><------> therm_throt_device_show_##_name, \
<------><------><------><------> NULL) \
#define define_therm_throt_device_show_func(event, name) \
<------><------><------><------><------><------><------><------><------>\
static ssize_t therm_throt_device_show_##event##_##name( \
<------><------><------>struct device *dev, \
<------><------><------>struct device_attribute *attr, \
<------><------><------>char *buf) \
{ \
<------>unsigned int cpu = dev->id; \
<------>ssize_t ret; \
<------><------><------><------><------><------><------><------><------>\
<------>preempt_disable(); /* CPU hotplug */ \
<------>if (cpu_online(cpu)) { \
<------><------>ret = sprintf(buf, "%lu\n", \
<------><------><------> per_cpu(thermal_state, cpu).event.name); \
<------>} else \
<------><------>ret = 0; \
<------>preempt_enable(); \
<------><------><------><------><------><------><------><------><------>\
<------>return ret; \
}
define_therm_throt_device_show_func(core_throttle, count);
define_therm_throt_device_one_ro(core_throttle_count);
define_therm_throt_device_show_func(core_power_limit, count);
define_therm_throt_device_one_ro(core_power_limit_count);
define_therm_throt_device_show_func(package_throttle, count);
define_therm_throt_device_one_ro(package_throttle_count);
define_therm_throt_device_show_func(package_power_limit, count);
define_therm_throt_device_one_ro(package_power_limit_count);
define_therm_throt_device_show_func(core_throttle, max_time_ms);
define_therm_throt_device_one_ro(core_throttle_max_time_ms);
define_therm_throt_device_show_func(package_throttle, max_time_ms);
define_therm_throt_device_one_ro(package_throttle_max_time_ms);
define_therm_throt_device_show_func(core_throttle, total_time_ms);
define_therm_throt_device_one_ro(core_throttle_total_time_ms);
define_therm_throt_device_show_func(package_throttle, total_time_ms);
define_therm_throt_device_one_ro(package_throttle_total_time_ms);
static struct attribute *thermal_throttle_attrs[] = {
<------>&dev_attr_core_throttle_count.attr,
<------>&dev_attr_core_throttle_max_time_ms.attr,
<------>&dev_attr_core_throttle_total_time_ms.attr,
<------>NULL
};
static const struct attribute_group thermal_attr_group = {
<------>.attrs = thermal_throttle_attrs,
<------>.name = "thermal_throttle"
};
#endif /* CONFIG_SYSFS */
#define CORE_LEVEL 0
#define PACKAGE_LEVEL 1
#define THERM_THROT_POLL_INTERVAL HZ
#define THERM_STATUS_PROCHOT_LOG BIT(1)
#define THERM_STATUS_CLEAR_CORE_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11) | BIT(13) | BIT(15))
#define THERM_STATUS_CLEAR_PKG_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11))
static void clear_therm_status_log(int level)
{
<------>int msr;
<------>u64 mask, msr_val;
<------>if (level == CORE_LEVEL) {
<------><------>msr = MSR_IA32_THERM_STATUS;
<------><------>mask = THERM_STATUS_CLEAR_CORE_MASK;
<------>} else {
<------><------>msr = MSR_IA32_PACKAGE_THERM_STATUS;
<------><------>mask = THERM_STATUS_CLEAR_PKG_MASK;
<------>}
<------>rdmsrl(msr, msr_val);
<------>msr_val &= mask;
<------>wrmsrl(msr, msr_val & ~THERM_STATUS_PROCHOT_LOG);
}
static void get_therm_status(int level, bool *proc_hot, u8 *temp)
{
<------>int msr;
<------>u64 msr_val;
<------>if (level == CORE_LEVEL)
<------><------>msr = MSR_IA32_THERM_STATUS;
<------>else
<------><------>msr = MSR_IA32_PACKAGE_THERM_STATUS;
<------>rdmsrl(msr, msr_val);
<------>if (msr_val & THERM_STATUS_PROCHOT_LOG)
<------><------>*proc_hot = true;
<------>else
<------><------>*proc_hot = false;
<------>*temp = (msr_val >> 16) & 0x7F;
}
static void __maybe_unused throttle_active_work(struct work_struct *work)
{
<------>struct _thermal_state *state = container_of(to_delayed_work(work),
<------><------><------><------><------><------>struct _thermal_state, therm_work);
<------>unsigned int i, avg, this_cpu = smp_processor_id();
<------>u64 now = get_jiffies_64();
<------>bool hot;
<------>u8 temp;
<------>get_therm_status(state->level, &hot, &temp);
<------>/* temperature value is offset from the max so lesser means hotter */
<------>if (!hot && temp > state->baseline_temp) {
<------><------>if (state->rate_control_active)
<------><------><------>pr_info("CPU%d: %s temperature/speed normal (total events = %lu)\n",
<------><------><------><------>this_cpu,
<------><------><------><------>state->level == CORE_LEVEL ? "Core" : "Package",
<------><------><------><------>state->count);
<------><------>state->rate_control_active = false;
<------><------>return;
<------>}
<------>if (time_before64(now, state->next_check) &&
<------><------><------> state->rate_control_active)
<------><------>goto re_arm;
<------>state->next_check = now + CHECK_INTERVAL;
<------>if (state->count != state->last_count) {
<------><------>/* There was one new thermal interrupt */
<------><------>state->last_count = state->count;
<------><------>state->average = 0;
<------><------>state->sample_count = 0;
<------><------>state->sample_index = 0;
<------>}
<------>state->temp_samples[state->sample_index] = temp;
<------>state->sample_count++;
<------>state->sample_index = (state->sample_index + 1) % ARRAY_SIZE(state->temp_samples);
<------>if (state->sample_count < ARRAY_SIZE(state->temp_samples))
<------><------>goto re_arm;
<------>avg = 0;
<------>for (i = 0; i < ARRAY_SIZE(state->temp_samples); ++i)
<------><------>avg += state->temp_samples[i];
<------>avg /= ARRAY_SIZE(state->temp_samples);
<------>if (state->average > avg) {
<------><------>pr_warn("CPU%d: %s temperature is above threshold, cpu clock is throttled (total events = %lu)\n",
<------><------><------>this_cpu,
<------><------><------>state->level == CORE_LEVEL ? "Core" : "Package",
<------><------><------>state->count);
<------><------>state->rate_control_active = true;
<------>}
<------>state->average = avg;
re_arm:
<------>clear_therm_status_log(state->level);
<------>schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL);
}
/***
* therm_throt_process - Process thermal throttling event from interrupt
* @curr: Whether the condition is current or not (boolean), since the
* thermal interrupt normally gets called both when the thermal
* event begins and once the event has ended.
*
* This function is called by the thermal interrupt after the
* IRQ has been acknowledged.
*
* It will take care of rate limiting and printing messages to the syslog.
*/
static void therm_throt_process(bool new_event, int event, int level)
{
<------>struct _thermal_state *state;
<------>unsigned int this_cpu = smp_processor_id();
<------>bool old_event;
<------>u64 now;
<------>struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu);
<------>now = get_jiffies_64();
<------>if (level == CORE_LEVEL) {
<------><------>if (event == THERMAL_THROTTLING_EVENT)
<------><------><------>state = &pstate->core_throttle;
<------><------>else if (event == POWER_LIMIT_EVENT)
<------><------><------>state = &pstate->core_power_limit;
<------><------>else
<------><------><------>return;
<------>} else if (level == PACKAGE_LEVEL) {
<------><------>if (event == THERMAL_THROTTLING_EVENT)
<------><------><------>state = &pstate->package_throttle;
<------><------>else if (event == POWER_LIMIT_EVENT)
<------><------><------>state = &pstate->package_power_limit;
<------><------>else
<------><------><------>return;
<------>} else
<------><------>return;
<------>old_event = state->new_event;
<------>state->new_event = new_event;
<------>if (new_event)
<------><------>state->count++;
<------>if (event != THERMAL_THROTTLING_EVENT)
<------><------>return;
<------>if (new_event && !state->last_interrupt_time) {
<------><------>bool hot;
<------><------>u8 temp;
<------><------>get_therm_status(state->level, &hot, &temp);
<------><------>/*
<------><------> * Ignore short temperature spike as the system is not close
<------><------> * to PROCHOT. 10C offset is large enough to ignore. It is
<------><------> * already dropped from the high threshold temperature.
<------><------> */
<------><------>if (temp > 10)
<------><------><------>return;
<------><------>state->baseline_temp = temp;
<------><------>state->last_interrupt_time = now;
<------><------>schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL);
<------>} else if (old_event && state->last_interrupt_time) {
<------><------>unsigned long throttle_time;
<------><------>throttle_time = jiffies_delta_to_msecs(now - state->last_interrupt_time);
<------><------>if (throttle_time > state->max_time_ms)
<------><------><------>state->max_time_ms = throttle_time;
<------><------>state->total_time_ms += throttle_time;
<------><------>state->last_interrupt_time = 0;
<------>}
}
static int thresh_event_valid(int level, int event)
{
<------>struct _thermal_state *state;
<------>unsigned int this_cpu = smp_processor_id();
<------>struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu);
<------>u64 now = get_jiffies_64();
<------>if (level == PACKAGE_LEVEL)
<------><------>state = (event == 0) ? &pstate->pkg_thresh0 :
<------><------><------><------><------><------>&pstate->pkg_thresh1;
<------>else
<------><------>state = (event == 0) ? &pstate->core_thresh0 :
<------><------><------><------><------><------>&pstate->core_thresh1;
<------>if (time_before64(now, state->next_check))
<------><------>return 0;
<------>state->next_check = now + CHECK_INTERVAL;
<------>return 1;
}
static bool int_pln_enable;
static int __init int_pln_enable_setup(char *s)
{
<------>int_pln_enable = true;
<------>return 1;
}
__setup("int_pln_enable", int_pln_enable_setup);
#ifdef CONFIG_SYSFS
/* Add/Remove thermal_throttle interface for CPU device: */
static int thermal_throttle_add_dev(struct device *dev, unsigned int cpu)
{
<------>int err;
<------>struct cpuinfo_x86 *c = &cpu_data(cpu);
<------>err = sysfs_create_group(&dev->kobj, &thermal_attr_group);
<------>if (err)
<------><------>return err;
<------>if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) {
<------><------>err = sysfs_add_file_to_group(&dev->kobj,
<------><------><------><------><------> &dev_attr_core_power_limit_count.attr,
<------><------><------><------><------> thermal_attr_group.name);
<------><------>if (err)
<------><------><------>goto del_group;
<------>}
<------>if (cpu_has(c, X86_FEATURE_PTS)) {
<------><------>err = sysfs_add_file_to_group(&dev->kobj,
<------><------><------><------><------> &dev_attr_package_throttle_count.attr,
<------><------><------><------><------> thermal_attr_group.name);
<------><------>if (err)
<------><------><------>goto del_group;
<------><------>err = sysfs_add_file_to_group(&dev->kobj,
<------><------><------><------><------> &dev_attr_package_throttle_max_time_ms.attr,
<------><------><------><------><------> thermal_attr_group.name);
<------><------>if (err)
<------><------><------>goto del_group;
<------><------>err = sysfs_add_file_to_group(&dev->kobj,
<------><------><------><------><------> &dev_attr_package_throttle_total_time_ms.attr,
<------><------><------><------><------> thermal_attr_group.name);
<------><------>if (err)
<------><------><------>goto del_group;
<------><------>if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) {
<------><------><------>err = sysfs_add_file_to_group(&dev->kobj,
<------><------><------><------><------>&dev_attr_package_power_limit_count.attr,
<------><------><------><------><------>thermal_attr_group.name);
<------><------><------>if (err)
<------><------><------><------>goto del_group;
<------><------>}
<------>}
<------>return 0;
del_group:
<------>sysfs_remove_group(&dev->kobj, &thermal_attr_group);
<------>return err;
}
static void thermal_throttle_remove_dev(struct device *dev)
{
<------>sysfs_remove_group(&dev->kobj, &thermal_attr_group);
}
/* Get notified when a cpu comes on/off. Be hotplug friendly. */
static int thermal_throttle_online(unsigned int cpu)
{
<------>struct thermal_state *state = &per_cpu(thermal_state, cpu);
<------>struct device *dev = get_cpu_device(cpu);
<------>u32 l;
<------>state->package_throttle.level = PACKAGE_LEVEL;
<------>state->core_throttle.level = CORE_LEVEL;
<------>INIT_DELAYED_WORK(&state->package_throttle.therm_work, throttle_active_work);
<------>INIT_DELAYED_WORK(&state->core_throttle.therm_work, throttle_active_work);
<------>/* Unmask the thermal vector after the above workqueues are initialized. */
<------>l = apic_read(APIC_LVTTHMR);
<------>apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED);
<------>return thermal_throttle_add_dev(dev, cpu);
}
static int thermal_throttle_offline(unsigned int cpu)
{
<------>struct thermal_state *state = &per_cpu(thermal_state, cpu);
<------>struct device *dev = get_cpu_device(cpu);
<------>u32 l;
<------>/* Mask the thermal vector before draining evtl. pending work */
<------>l = apic_read(APIC_LVTTHMR);
<------>apic_write(APIC_LVTTHMR, l | APIC_LVT_MASKED);
<------>cancel_delayed_work_sync(&state->package_throttle.therm_work);
<------>cancel_delayed_work_sync(&state->core_throttle.therm_work);
<------>state->package_throttle.rate_control_active = false;
<------>state->core_throttle.rate_control_active = false;
<------>thermal_throttle_remove_dev(dev);
<------>return 0;
}
static __init int thermal_throttle_init_device(void)
{
<------>int ret;
<------>if (!atomic_read(&therm_throt_en))
<------><------>return 0;
<------>ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/therm:online",
<------><------><------><------>thermal_throttle_online,
<------><------><------><------>thermal_throttle_offline);
<------>return ret < 0 ? ret : 0;
}
device_initcall(thermal_throttle_init_device);
#endif /* CONFIG_SYSFS */
static void notify_package_thresholds(__u64 msr_val)
{
<------>bool notify_thres_0 = false;
<------>bool notify_thres_1 = false;
<------>if (!platform_thermal_package_notify)
<------><------>return;
<------>/* lower threshold check */
<------>if (msr_val & THERM_LOG_THRESHOLD0)
<------><------>notify_thres_0 = true;
<------>/* higher threshold check */
<------>if (msr_val & THERM_LOG_THRESHOLD1)
<------><------>notify_thres_1 = true;
<------>if (!notify_thres_0 && !notify_thres_1)
<------><------>return;
<------>if (platform_thermal_package_rate_control &&
<------><------>platform_thermal_package_rate_control()) {
<------><------>/* Rate control is implemented in callback */
<------><------>platform_thermal_package_notify(msr_val);
<------><------>return;
<------>}
<------>/* lower threshold reached */
<------>if (notify_thres_0 && thresh_event_valid(PACKAGE_LEVEL, 0))
<------><------>platform_thermal_package_notify(msr_val);
<------>/* higher threshold reached */
<------>if (notify_thres_1 && thresh_event_valid(PACKAGE_LEVEL, 1))
<------><------>platform_thermal_package_notify(msr_val);
}
static void notify_thresholds(__u64 msr_val)
{
<------>/* check whether the interrupt handler is defined;
<------> * otherwise simply return
<------> */
<------>if (!platform_thermal_notify)
<------><------>return;
<------>/* lower threshold reached */
<------>if ((msr_val & THERM_LOG_THRESHOLD0) &&
<------><------><------>thresh_event_valid(CORE_LEVEL, 0))
<------><------>platform_thermal_notify(msr_val);
<------>/* higher threshold reached */
<------>if ((msr_val & THERM_LOG_THRESHOLD1) &&
<------><------><------>thresh_event_valid(CORE_LEVEL, 1))
<------><------>platform_thermal_notify(msr_val);
}
/* Thermal transition interrupt handler */
static void intel_thermal_interrupt(void)
{
<------>__u64 msr_val;
<------>if (static_cpu_has(X86_FEATURE_HWP))
<------><------>wrmsrl_safe(MSR_HWP_STATUS, 0);
<------>rdmsrl(MSR_IA32_THERM_STATUS, msr_val);
<------>/* Check for violation of core thermal thresholds*/
<------>notify_thresholds(msr_val);
<------>therm_throt_process(msr_val & THERM_STATUS_PROCHOT,
<------><------><------> THERMAL_THROTTLING_EVENT,
<------><------><------> CORE_LEVEL);
<------>if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable)
<------><------>therm_throt_process(msr_val & THERM_STATUS_POWER_LIMIT,
<------><------><------><------><------>POWER_LIMIT_EVENT,
<------><------><------><------><------>CORE_LEVEL);
<------>if (this_cpu_has(X86_FEATURE_PTS)) {
<------><------>rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val);
<------><------>/* check violations of package thermal thresholds */
<------><------>notify_package_thresholds(msr_val);
<------><------>therm_throt_process(msr_val & PACKAGE_THERM_STATUS_PROCHOT,
<------><------><------><------><------>THERMAL_THROTTLING_EVENT,
<------><------><------><------><------>PACKAGE_LEVEL);
<------><------>if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable)
<------><------><------>therm_throt_process(msr_val &
<------><------><------><------><------>PACKAGE_THERM_STATUS_POWER_LIMIT,
<------><------><------><------><------>POWER_LIMIT_EVENT,
<------><------><------><------><------>PACKAGE_LEVEL);
<------>}
}
static void unexpected_thermal_interrupt(void)
{
<------>pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
<------><------>smp_processor_id());
}
static void (*smp_thermal_vector)(void) = unexpected_thermal_interrupt;
DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
{
<------>trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
<------>inc_irq_stat(irq_thermal_count);
<------>smp_thermal_vector();
<------>trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
<------>ack_APIC_irq();
}
/* Thermal monitoring depends on APIC, ACPI and clock modulation */
static int intel_thermal_supported(struct cpuinfo_x86 *c)
{
<------>if (!boot_cpu_has(X86_FEATURE_APIC))
<------><------>return 0;
<------>if (!cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC))
<------><------>return 0;
<------>return 1;
}
void __init mcheck_intel_therm_init(void)
{
<------>/*
<------> * This function is only called on boot CPU. Save the init thermal
<------> * LVT value on BSP and use that value to restore APs' thermal LVT
<------> * entry BIOS programmed later
<------> */
<------>if (intel_thermal_supported(&boot_cpu_data))
<------><------>lvtthmr_init = apic_read(APIC_LVTTHMR);
}
void intel_init_thermal(struct cpuinfo_x86 *c)
{
<------>unsigned int cpu = smp_processor_id();
<------>int tm2 = 0;
<------>u32 l, h;
<------>if (!intel_thermal_supported(c))
<------><------>return;
<------>/*
<------> * First check if its enabled already, in which case there might
<------> * be some SMM goo which handles it, so we can't even put a handler
<------> * since it might be delivered via SMI already:
<------> */
<------>rdmsr(MSR_IA32_MISC_ENABLE, l, h);
<------>h = lvtthmr_init;
<------>/*
<------> * The initial value of thermal LVT entries on all APs always reads
<------> * 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI
<------> * sequence to them and LVT registers are reset to 0s except for
<------> * the mask bits which are set to 1s when APs receive INIT IPI.
<------> * If BIOS takes over the thermal interrupt and sets its interrupt
<------> * delivery mode to SMI (not fixed), it restores the value that the
<------> * BIOS has programmed on AP based on BSP's info we saved since BIOS
<------> * is always setting the same value for all threads/cores.
<------> */
<------>if ((h & APIC_DM_FIXED_MASK) != APIC_DM_FIXED)
<------><------>apic_write(APIC_LVTTHMR, lvtthmr_init);
<------>if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) {
<------><------>if (system_state == SYSTEM_BOOTING)
<------><------><------>pr_debug("CPU%d: Thermal monitoring handled by SMI\n", cpu);
<------><------>return;
<------>}
<------>/* early Pentium M models use different method for enabling TM2 */
<------>if (cpu_has(c, X86_FEATURE_TM2)) {
<------><------>if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) {
<------><------><------>rdmsr(MSR_THERM2_CTL, l, h);
<------><------><------>if (l & MSR_THERM2_CTL_TM_SELECT)
<------><------><------><------>tm2 = 1;
<------><------>} else if (l & MSR_IA32_MISC_ENABLE_TM2)
<------><------><------>tm2 = 1;
<------>}
<------>/* We'll mask the thermal vector in the lapic till we're ready: */
<------>h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED;
<------>apic_write(APIC_LVTTHMR, h);
<------>rdmsr(MSR_IA32_THERM_INTERRUPT, l, h);
<------>if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable)
<------><------>wrmsr(MSR_IA32_THERM_INTERRUPT,
<------><------><------>(l | (THERM_INT_LOW_ENABLE
<------><------><------>| THERM_INT_HIGH_ENABLE)) & ~THERM_INT_PLN_ENABLE, h);
<------>else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
<------><------>wrmsr(MSR_IA32_THERM_INTERRUPT,
<------><------><------>l | (THERM_INT_LOW_ENABLE
<------><------><------>| THERM_INT_HIGH_ENABLE | THERM_INT_PLN_ENABLE), h);
<------>else
<------><------>wrmsr(MSR_IA32_THERM_INTERRUPT,
<------><------> l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h);
<------>if (cpu_has(c, X86_FEATURE_PTS)) {
<------><------>rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
<------><------>if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable)
<------><------><------>wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
<------><------><------><------>(l | (PACKAGE_THERM_INT_LOW_ENABLE
<------><------><------><------>| PACKAGE_THERM_INT_HIGH_ENABLE))
<------><------><------><------>& ~PACKAGE_THERM_INT_PLN_ENABLE, h);
<------><------>else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
<------><------><------>wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
<------><------><------><------>l | (PACKAGE_THERM_INT_LOW_ENABLE
<------><------><------><------>| PACKAGE_THERM_INT_HIGH_ENABLE
<------><------><------><------>| PACKAGE_THERM_INT_PLN_ENABLE), h);
<------><------>else
<------><------><------>wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
<------><------><------> l | (PACKAGE_THERM_INT_LOW_ENABLE
<------><------><------><------>| PACKAGE_THERM_INT_HIGH_ENABLE), h);
<------>}
<------>smp_thermal_vector = intel_thermal_interrupt;
<------>rdmsr(MSR_IA32_MISC_ENABLE, l, h);
<------>wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h);
<------>pr_info_once("CPU0: Thermal monitoring enabled (%s)\n",
<------><------> tm2 ? "TM2" : "TM1");
<------>/* enable thermal throttle processing */
<------>atomic_set(&therm_throt_en, 1);
}