Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_PROCESSOR_H
#define _ASM_X86_PROCESSOR_H
#include <asm/processor-flags.h>
/* Forward declaration, a strange C thing */
struct task_struct;
struct mm_struct;
struct io_bitmap;
struct vm86;
#include <asm/math_emu.h>
#include <asm/segment.h>
#include <asm/types.h>
#include <uapi/asm/sigcontext.h>
#include <asm/current.h>
#include <asm/cpufeatures.h>
#include <asm/page.h>
#include <asm/pgtable_types.h>
#include <asm/percpu.h>
#include <asm/msr.h>
#include <asm/desc_defs.h>
#include <asm/nops.h>
#include <asm/special_insns.h>
#include <asm/fpu/types.h>
#include <asm/unwind_hints.h>
#include <asm/vmxfeatures.h>
#include <asm/vdso/processor.h>
#include <linux/personality.h>
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/math64.h>
#include <linux/err.h>
#include <linux/irqflags.h>
#include <linux/mem_encrypt.h>
/*
* We handle most unaligned accesses in hardware. On the other hand
* unaligned DMA can be quite expensive on some Nehalem processors.
*
* Based on this we disable the IP header alignment in network drivers.
*/
#define NET_IP_ALIGN 0
#define HBP_NUM 4
/*
* These alignment constraints are for performance in the vSMP case,
* but in the task_struct case we must also meet hardware imposed
* alignment requirements of the FPU state:
*/
#ifdef CONFIG_X86_VSMP
# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
#else
# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
# define ARCH_MIN_MMSTRUCT_ALIGN 0
#endif
enum tlb_infos {
<------>ENTRIES,
<------>NR_INFO
};
extern u16 __read_mostly tlb_lli_4k[NR_INFO];
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
/*
* CPU type and hardware bug flags. Kept separately for each CPU.
* Members of this structure are referenced in head_32.S, so think twice
* before touching them. [mj]
*/
struct cpuinfo_x86 {
<------>__u8 x86; /* CPU family */
<------>__u8 x86_vendor; /* CPU vendor */
<------>__u8 x86_model;
<------>__u8 x86_stepping;
#ifdef CONFIG_X86_64
<------>/* Number of 4K pages in DTLB/ITLB combined(in pages): */
<------>int x86_tlbsize;
#endif
#ifdef CONFIG_X86_VMX_FEATURE_NAMES
<------>__u32 vmx_capability[NVMXINTS];
#endif
<------>__u8 x86_virt_bits;
<------>__u8 x86_phys_bits;
<------>/* CPUID returned core id bits: */
<------>__u8 x86_coreid_bits;
<------>__u8 cu_id;
<------>/* Max extended CPUID function supported: */
<------>__u32 extended_cpuid_level;
<------>/* Maximum supported CPUID level, -1=no CPUID: */
<------>int cpuid_level;
<------>/*
<------> * Align to size of unsigned long because the x86_capability array
<------> * is passed to bitops which require the alignment. Use unnamed
<------> * union to enforce the array is aligned to size of unsigned long.
<------> */
<------>union {
<------><------>__u32 x86_capability[NCAPINTS + NBUGINTS];
<------><------>unsigned long x86_capability_alignment;
<------>};
<------>char x86_vendor_id[16];
<------>char x86_model_id[64];
<------>/* in KB - valid for CPUS which support this call: */
<------>unsigned int x86_cache_size;
<------>int x86_cache_alignment; /* In bytes */
<------>/* Cache QoS architectural values, valid only on the BSP: */
<------>int x86_cache_max_rmid; /* max index */
<------>int x86_cache_occ_scale; /* scale to bytes */
<------>int x86_cache_mbm_width_offset;
<------>int x86_power;
<------>unsigned long loops_per_jiffy;
<------>/* cpuid returned max cores value: */
<------>u16 x86_max_cores;
<------>u16 apicid;
<------>u16 initial_apicid;
<------>u16 x86_clflush_size;
<------>/* number of cores as seen by the OS: */
<------>u16 booted_cores;
<------>/* Physical processor id: */
<------>u16 phys_proc_id;
<------>/* Logical processor id: */
<------>u16 logical_proc_id;
<------>/* Core id: */
<------>u16 cpu_core_id;
<------>u16 cpu_die_id;
<------>u16 logical_die_id;
<------>/* Index into per_cpu list: */
<------>u16 cpu_index;
<------>u32 microcode;
<------>/* Address space bits used by the cache internally */
<------>u8 x86_cache_bits;
<------>unsigned initialized : 1;
} __randomize_layout;
struct cpuid_regs {
<------>u32 eax, ebx, ecx, edx;
};
enum cpuid_regs_idx {
<------>CPUID_EAX = 0,
<------>CPUID_EBX,
<------>CPUID_ECX,
<------>CPUID_EDX,
};
#define X86_VENDOR_INTEL 0
#define X86_VENDOR_CYRIX 1
#define X86_VENDOR_AMD 2
#define X86_VENDOR_UMC 3
#define X86_VENDOR_CENTAUR 5
#define X86_VENDOR_TRANSMETA 7
#define X86_VENDOR_NSC 8
#define X86_VENDOR_HYGON 9
#define X86_VENDOR_ZHAOXIN 10
#define X86_VENDOR_NUM 11
#define X86_VENDOR_UNKNOWN 0xff
/*
* capabilities of CPUs
*/
extern struct cpuinfo_x86 boot_cpu_data;
extern struct cpuinfo_x86 new_cpu_data;
extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
#ifdef CONFIG_SMP
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
#define cpu_data(cpu) per_cpu(cpu_info, cpu)
#else
#define cpu_info boot_cpu_data
#define cpu_data(cpu) boot_cpu_data
#endif
extern const struct seq_operations cpuinfo_op;
#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
extern void cpu_detect(struct cpuinfo_x86 *c);
static inline unsigned long long l1tf_pfn_limit(void)
{
<------>return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
}
extern void early_cpu_init(void);
extern void identify_boot_cpu(void);
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
extern void print_cpu_info(struct cpuinfo_x86 *);
void print_cpu_msr(struct cpuinfo_x86 *);
#ifdef CONFIG_X86_32
extern int have_cpuid_p(void);
#else
static inline int have_cpuid_p(void)
{
<------>return 1;
}
#endif
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
<------><------><------><------>unsigned int *ecx, unsigned int *edx)
{
<------>/* ecx is often an input as well as an output. */
<------>asm volatile("cpuid"
<------> : "=a" (*eax),
<------> "=b" (*ebx),
<------> "=c" (*ecx),
<------> "=d" (*edx)
<------> : "0" (*eax), "2" (*ecx)
<------> : "memory");
}
#define native_cpuid_reg(reg) \
static inline unsigned int native_cpuid_##reg(unsigned int op) \
{ \
<------>unsigned int eax = op, ebx, ecx = 0, edx; \
<------><------><------><------><------><------><------><------>\
<------>native_cpuid(&eax, &ebx, &ecx, &edx); \
<------><------><------><------><------><------><------><------>\
<------>return reg; \
}
/*
* Native CPUID functions returning a single datum.
*/
native_cpuid_reg(eax)
native_cpuid_reg(ebx)
native_cpuid_reg(ecx)
native_cpuid_reg(edx)
/*
* Friendlier CR3 helpers.
*/
static inline unsigned long read_cr3_pa(void)
{
<------>return __read_cr3() & CR3_ADDR_MASK;
}
static inline unsigned long native_read_cr3_pa(void)
{
<------>return __native_read_cr3() & CR3_ADDR_MASK;
}
static inline void load_cr3(pgd_t *pgdir)
{
<------>write_cr3(__sme_pa(pgdir));
}
/*
* Note that while the legacy 'TSS' name comes from 'Task State Segment',
* on modern x86 CPUs the TSS also holds information important to 64-bit mode,
* unrelated to the task-switch mechanism:
*/
#ifdef CONFIG_X86_32
/* This is the TSS defined by the hardware. */
struct x86_hw_tss {
<------>unsigned short back_link, __blh;
<------>unsigned long sp0;
<------>unsigned short ss0, __ss0h;
<------>unsigned long sp1;
<------>/*
<------> * We don't use ring 1, so ss1 is a convenient scratch space in
<------> * the same cacheline as sp0. We use ss1 to cache the value in
<------> * MSR_IA32_SYSENTER_CS. When we context switch
<------> * MSR_IA32_SYSENTER_CS, we first check if the new value being
<------> * written matches ss1, and, if it's not, then we wrmsr the new
<------> * value and update ss1.
<------> *
<------> * The only reason we context switch MSR_IA32_SYSENTER_CS is
<------> * that we set it to zero in vm86 tasks to avoid corrupting the
<------> * stack if we were to go through the sysenter path from vm86
<------> * mode.
<------> */
<------>unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
<------>unsigned short __ss1h;
<------>unsigned long sp2;
<------>unsigned short ss2, __ss2h;
<------>unsigned long __cr3;
<------>unsigned long ip;
<------>unsigned long flags;
<------>unsigned long ax;
<------>unsigned long cx;
<------>unsigned long dx;
<------>unsigned long bx;
<------>unsigned long sp;
<------>unsigned long bp;
<------>unsigned long si;
<------>unsigned long di;
<------>unsigned short es, __esh;
<------>unsigned short cs, __csh;
<------>unsigned short ss, __ssh;
<------>unsigned short ds, __dsh;
<------>unsigned short fs, __fsh;
<------>unsigned short gs, __gsh;
<------>unsigned short ldt, __ldth;
<------>unsigned short trace;
<------>unsigned short io_bitmap_base;
} __attribute__((packed));
#else
struct x86_hw_tss {
<------>u32 reserved1;
<------>u64 sp0;
<------>/*
<------> * We store cpu_current_top_of_stack in sp1 so it's always accessible.
<------> * Linux does not use ring 1, so sp1 is not otherwise needed.
<------> */
<------>u64 sp1;
<------>/*
<------> * Since Linux does not use ring 2, the 'sp2' slot is unused by
<------> * hardware. entry_SYSCALL_64 uses it as scratch space to stash
<------> * the user RSP value.
<------> */
<------>u64 sp2;
<------>u64 reserved2;
<------>u64 ist[7];
<------>u32 reserved3;
<------>u32 reserved4;
<------>u16 reserved5;
<------>u16 io_bitmap_base;
} __attribute__((packed));
#endif
/*
* IO-bitmap sizes:
*/
#define IO_BITMAP_BITS 65536
#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
#define IO_BITMAP_OFFSET_VALID_MAP \
<------>(offsetof(struct tss_struct, io_bitmap.bitmap) - \
<------> offsetof(struct tss_struct, x86_tss))
#define IO_BITMAP_OFFSET_VALID_ALL \
<------>(offsetof(struct tss_struct, io_bitmap.mapall) - \
<------> offsetof(struct tss_struct, x86_tss))
#ifdef CONFIG_X86_IOPL_IOPERM
/*
* sizeof(unsigned long) coming from an extra "long" at the end of the
* iobitmap. The limit is inclusive, i.e. the last valid byte.
*/
# define __KERNEL_TSS_LIMIT \
<------>(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
<------> sizeof(unsigned long) - 1)
#else
# define __KERNEL_TSS_LIMIT \
<------>(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
#endif
/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
struct entry_stack {
<------>char stack[PAGE_SIZE];
};
struct entry_stack_page {
<------>struct entry_stack stack;
} __aligned(PAGE_SIZE);
/*
* All IO bitmap related data stored in the TSS:
*/
struct x86_io_bitmap {
<------>/* The sequence number of the last active bitmap. */
<------>u64 prev_sequence;
<------>/*
<------> * Store the dirty size of the last io bitmap offender. The next
<------> * one will have to do the cleanup as the switch out to a non io
<------> * bitmap user will just set x86_tss.io_bitmap_base to a value
<------> * outside of the TSS limit. So for sane tasks there is no need to
<------> * actually touch the io_bitmap at all.
<------> */
<------>unsigned int prev_max;
<------>/*
<------> * The extra 1 is there because the CPU will access an
<------> * additional byte beyond the end of the IO permission
<------> * bitmap. The extra byte must be all 1 bits, and must
<------> * be within the limit.
<------> */
<------>unsigned long bitmap[IO_BITMAP_LONGS + 1];
<------>/*
<------> * Special I/O bitmap to emulate IOPL(3). All bytes zero,
<------> * except the additional byte at the end.
<------> */
<------>unsigned long mapall[IO_BITMAP_LONGS + 1];
};
struct tss_struct {
<------>/*
<------> * The fixed hardware portion. This must not cross a page boundary
<------> * at risk of violating the SDM's advice and potentially triggering
<------> * errata.
<------> */
<------>struct x86_hw_tss x86_tss;
<------>struct x86_io_bitmap io_bitmap;
} __aligned(PAGE_SIZE);
DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
/* Per CPU interrupt stacks */
struct irq_stack {
<------>char stack[IRQ_STACK_SIZE];
} __aligned(IRQ_STACK_SIZE);
DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
#ifdef CONFIG_X86_32
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
#else
/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
#endif
#ifdef CONFIG_X86_64
struct fixed_percpu_data {
<------>/*
<------> * GCC hardcodes the stack canary as %gs:40. Since the
<------> * irq_stack is the object at %gs:0, we reserve the bottom
<------> * 48 bytes of the irq stack for the canary.
<------> */
<------>char gs_base[40];
<------>unsigned long stack_canary;
};
DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
DECLARE_INIT_PER_CPU(fixed_percpu_data);
static inline unsigned long cpu_kernelmode_gs_base(int cpu)
{
<------>return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
}
DECLARE_PER_CPU(unsigned int, irq_count);
extern asmlinkage void ignore_sysret(void);
/* Save actual FS/GS selectors and bases to current->thread */
void current_save_fsgs(void);
#else /* X86_64 */
#ifdef CONFIG_STACKPROTECTOR
/*
* Make sure stack canary segment base is cached-aligned:
* "For Intel Atom processors, avoid non zero segment base address
* that is not aligned to cache line boundary at all cost."
* (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
*/
struct stack_canary {
<------>char __pad[20]; /* canary at %gs:20 */
<------>unsigned long canary;
};
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
#endif
/* Per CPU softirq stack pointer */
DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
#endif /* X86_64 */
extern unsigned int fpu_kernel_xstate_size;
extern unsigned int fpu_user_xstate_size;
struct perf_event;
struct thread_struct {
<------>/* Cached TLS descriptors: */
<------>struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
#ifdef CONFIG_X86_32
<------>unsigned long sp0;
#endif
<------>unsigned long sp;
#ifdef CONFIG_X86_32
<------>unsigned long sysenter_cs;
#else
<------>unsigned short es;
<------>unsigned short ds;
<------>unsigned short fsindex;
<------>unsigned short gsindex;
#endif
#ifdef CONFIG_X86_64
<------>unsigned long fsbase;
<------>unsigned long gsbase;
#else
<------>/*
<------> * XXX: this could presumably be unsigned short. Alternatively,
<------> * 32-bit kernels could be taught to use fsindex instead.
<------> */
<------>unsigned long fs;
<------>unsigned long gs;
#endif
<------>/* Save middle states of ptrace breakpoints */
<------>struct perf_event *ptrace_bps[HBP_NUM];
<------>/* Debug status used for traps, single steps, etc... */
<------>unsigned long virtual_dr6;
<------>/* Keep track of the exact dr7 value set by the user */
<------>unsigned long ptrace_dr7;
<------>/* Fault info: */
<------>unsigned long cr2;
<------>unsigned long trap_nr;
<------>unsigned long error_code;
#ifdef CONFIG_VM86
<------>/* Virtual 86 mode info */
<------>struct vm86 *vm86;
#endif
<------>/* IO permissions: */
<------>struct io_bitmap *io_bitmap;
<------>/*
<------> * IOPL. Priviledge level dependent I/O permission which is
<------> * emulated via the I/O bitmap to prevent user space from disabling
<------> * interrupts.
<------> */
<------>unsigned long iopl_emul;
<------>unsigned int iopl_warn:1;
<------>unsigned int sig_on_uaccess_err:1;
<------>/* Floating point and extended processor state */
<------>struct fpu fpu;
<------>/*
<------> * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
<------> * the end.
<------> */
};
/* Whitelist the FPU state from the task_struct for hardened usercopy. */
static inline void arch_thread_struct_whitelist(unsigned long *offset,
<------><------><------><------><------><------>unsigned long *size)
{
<------>*offset = offsetof(struct thread_struct, fpu.state);
<------>*size = fpu_kernel_xstate_size;
}
static inline void
native_load_sp0(unsigned long sp0)
{
<------>this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
}
static __always_inline void native_swapgs(void)
{
#ifdef CONFIG_X86_64
<------>asm volatile("swapgs" ::: "memory");
#endif
}
static inline unsigned long current_top_of_stack(void)
{
<------>/*
<------> * We can't read directly from tss.sp0: sp0 on x86_32 is special in
<------> * and around vm86 mode and sp0 on x86_64 is special because of the
<------> * entry trampoline.
<------> */
<------>return this_cpu_read_stable(cpu_current_top_of_stack);
}
static inline bool on_thread_stack(void)
{
<------>return (unsigned long)(current_top_of_stack() -
<------><------><------> current_stack_pointer) < THREAD_SIZE;
}
#ifdef CONFIG_PARAVIRT_XXL
#include <asm/paravirt.h>
#else
#define __cpuid native_cpuid
static inline void load_sp0(unsigned long sp0)
{
<------>native_load_sp0(sp0);
}
#endif /* CONFIG_PARAVIRT_XXL */
/* Free all resources held by a thread. */
extern void release_thread(struct task_struct *);
unsigned long get_wchan(struct task_struct *p);
/*
* Generic CPUID function
* clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
* resulting in stale register contents being returned.
*/
static inline void cpuid(unsigned int op,
<------><------><------> unsigned int *eax, unsigned int *ebx,
<------><------><------> unsigned int *ecx, unsigned int *edx)
{
<------>*eax = op;
<------>*ecx = 0;
<------>__cpuid(eax, ebx, ecx, edx);
}
/* Some CPUID calls want 'count' to be placed in ecx */
static inline void cpuid_count(unsigned int op, int count,
<------><------><------> unsigned int *eax, unsigned int *ebx,
<------><------><------> unsigned int *ecx, unsigned int *edx)
{
<------>*eax = op;
<------>*ecx = count;
<------>__cpuid(eax, ebx, ecx, edx);
}
/*
* CPUID functions returning a single datum
*/
static inline unsigned int cpuid_eax(unsigned int op)
{
<------>unsigned int eax, ebx, ecx, edx;
<------>cpuid(op, &eax, &ebx, &ecx, &edx);
<------>return eax;
}
static inline unsigned int cpuid_ebx(unsigned int op)
{
<------>unsigned int eax, ebx, ecx, edx;
<------>cpuid(op, &eax, &ebx, &ecx, &edx);
<------>return ebx;
}
static inline unsigned int cpuid_ecx(unsigned int op)
{
<------>unsigned int eax, ebx, ecx, edx;
<------>cpuid(op, &eax, &ebx, &ecx, &edx);
<------>return ecx;
}
static inline unsigned int cpuid_edx(unsigned int op)
{
<------>unsigned int eax, ebx, ecx, edx;
<------>cpuid(op, &eax, &ebx, &ecx, &edx);
<------>return edx;
}
extern void select_idle_routine(const struct cpuinfo_x86 *c);
extern void amd_e400_c1e_apic_setup(void);
extern unsigned long boot_option_idle_override;
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
<------><------><------> IDLE_POLL};
extern void enable_sep_cpu(void);
extern int sysenter_setup(void);
/* Defined in head.S */
extern struct desc_ptr early_gdt_descr;
extern void switch_to_new_gdt(int);
extern void load_direct_gdt(int);
extern void load_fixmap_gdt(int);
extern void load_percpu_segment(int);
extern void cpu_init(void);
extern void cpu_init_exception_handling(void);
extern void cr4_init(void);
static inline unsigned long get_debugctlmsr(void)
{
<------>unsigned long debugctlmsr = 0;
#ifndef CONFIG_X86_DEBUGCTLMSR
<------>if (boot_cpu_data.x86 < 6)
<------><------>return 0;
#endif
<------>rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
<------>return debugctlmsr;
}
static inline void update_debugctlmsr(unsigned long debugctlmsr)
{
#ifndef CONFIG_X86_DEBUGCTLMSR
<------>if (boot_cpu_data.x86 < 6)
<------><------>return;
#endif
<------>wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
}
extern void set_task_blockstep(struct task_struct *task, bool on);
/* Boot loader type from the setup header: */
extern int bootloader_type;
extern int bootloader_version;
extern char ignore_fpu_irq;
#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH
#ifdef CONFIG_X86_32
# define BASE_PREFETCH ""
# define ARCH_HAS_PREFETCH
#else
# define BASE_PREFETCH "prefetcht0 %P1"
#endif
/*
* Prefetch instructions for Pentium III (+) and AMD Athlon (+)
*
* It's not worth to care about 3dnow prefetches for the K6
* because they are microcoded there and very slow.
*/
static inline void prefetch(const void *x)
{
<------>alternative_input(BASE_PREFETCH, "prefetchnta %P1",
<------><------><------> X86_FEATURE_XMM,
<------><------><------> "m" (*(const char *)x));
}
/*
* 3dnow prefetch to get an exclusive cache line.
* Useful for spinlocks to avoid one state transition in the
* cache coherency protocol:
*/
static __always_inline void prefetchw(const void *x)
{
<------>alternative_input(BASE_PREFETCH, "prefetchw %P1",
<------><------><------> X86_FEATURE_3DNOWPREFETCH,
<------><------><------> "m" (*(const char *)x));
}
static inline void spin_lock_prefetch(const void *x)
{
<------>prefetchw(x);
}
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
<------><------><------> TOP_OF_KERNEL_STACK_PADDING)
#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
#define task_pt_regs(task) \
({ \
<------>unsigned long __ptr = (unsigned long)task_stack_page(task); \
<------>__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
<------>((struct pt_regs *)__ptr) - 1; \
})
#ifdef CONFIG_X86_32
#define INIT_THREAD { \
<------>.sp0 = TOP_OF_INIT_STACK, \
<------>.sysenter_cs = __KERNEL_CS, \
}
#define KSTK_ESP(task) (task_pt_regs(task)->sp)
#else
#define INIT_THREAD { }
extern unsigned long KSTK_ESP(struct task_struct *task);
#endif /* CONFIG_X86_64 */
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
<------><------><------><------><------> unsigned long new_sp);
/*
* This decides where the kernel will search for a free chunk of vm
* space during mmap's.
*/
#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
#define KSTK_EIP(task) (task_pt_regs(task)->ip)
/* Get/set a process' ability to use the timestamp counter instruction */
#define GET_TSC_CTL(adr) get_tsc_mode((adr))
#define SET_TSC_CTL(val) set_tsc_mode((val))
extern int get_tsc_mode(unsigned long adr);
extern int set_tsc_mode(unsigned int val);
DECLARE_PER_CPU(u64, msr_misc_features_shadow);
#ifdef CONFIG_CPU_SUP_AMD
extern u16 amd_get_nb_id(int cpu);
extern u32 amd_get_nodes_per_socket(void);
#else
static inline u16 amd_get_nb_id(int cpu) { return 0; }
static inline u32 amd_get_nodes_per_socket(void) { return 0; }
#endif
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
{
<------>uint32_t base, eax, signature[3];
<------>for (base = 0x40000000; base < 0x40010000; base += 0x100) {
<------><------>cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
<------><------>if (!memcmp(sig, signature, 12) &&
<------><------> (leaves == 0 || ((eax - base) >= leaves)))
<------><------><------>return base;
<------>}
<------>return 0;
}
extern unsigned long arch_align_stack(unsigned long sp);
void free_init_pages(const char *what, unsigned long begin, unsigned long end);
extern void free_kernel_image_pages(const char *what, void *begin, void *end);
void default_idle(void);
#ifdef CONFIG_XEN
bool xen_set_default_idle(void);
#else
#define xen_set_default_idle 0
#endif
void stop_this_cpu(void *dummy);
void microcode_check(void);
enum l1tf_mitigations {
<------>L1TF_MITIGATION_OFF,
<------>L1TF_MITIGATION_FLUSH_NOWARN,
<------>L1TF_MITIGATION_FLUSH,
<------>L1TF_MITIGATION_FLUSH_NOSMT,
<------>L1TF_MITIGATION_FULL,
<------>L1TF_MITIGATION_FULL_FORCE
};
extern enum l1tf_mitigations l1tf_mitigation;
enum mds_mitigations {
<------>MDS_MITIGATION_OFF,
<------>MDS_MITIGATION_FULL,
<------>MDS_MITIGATION_VMWERV,
};
#endif /* _ASM_X86_PROCESSOR_H */