^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * linux/include/asm/dma.h: Defines for using and allocating dma channels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Written by Hennus Bergman, 1992.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * High DMA channel support & info by Hannu Savolainen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * and John Boyd, Nov. 1992.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #ifndef _ASM_X86_DMA_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #define _ASM_X86_DMA_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/spinlock.h> /* And spinlocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <asm/io.h> /* need byte IO */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #define dma_outb outb_p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #define dma_outb outb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #define dma_inb inb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * NOTES about DMA transfers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * controller 1: channels 0-3, byte operations, ports 00-1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * controller 2: channels 4-7, word operations, ports C0-DF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) * - ALL registers are 8 bits only, regardless of transfer size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * - channel 4 is not used - cascades 1 into 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) * - channels 0-3 are byte - addresses/counts are for physical bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * - channels 5-7 are word - addresses/counts are for physical words
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * - transfer count loaded to registers is 1 less than actual count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * - controller 2 offsets are all even (2x offsets for controller 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) * - page registers for 5-7 don't use data bit 0, represent 128K pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * - page registers for 0-3 use bit 0, represent 64K pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * DMA transfers are limited to the lower 16MB of _physical_ memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * Note that addresses loaded into registers must be _physical_ addresses,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * not logical addresses (which may differ if paging is active).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * Address mapping for channels 0-3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * | ... | | ... | | ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * | ... | | ... | | ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) * | ... | | ... | | ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * P7 ... P0 A7 ... A0 A7 ... A0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) * | Page | Addr MSB | Addr LSB | (DMA registers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) * Address mapping for channels 5-7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * | ... | \ \ ... \ \ \ ... \ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) * | ... | \ \ ... \ \ \ ... \ (not used)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) * | ... | \ \ ... \ \ \ ... \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) * | Page | Addr MSB | Addr LSB | (DMA registers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * the hardware level, so odd-byte transfers aren't possible).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) * Transfer count (_not # bytes_) is limited to 64K, represented as actual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * and up to 128K bytes may be transferred on channels 5-7 in one operation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define MAX_DMA_CHANNELS 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) /* 16MB ISA DMA zone */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) #define MAX_DMA_PFN ((16UL * 1024 * 1024) >> PAGE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) /* 4GB broken PCI/AGP hardware bus master zone */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) #define MAX_DMA32_PFN (1UL << (32 - PAGE_SHIFT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #ifdef CONFIG_X86_32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) /* The maximum address that we can perform a DMA transfer to on this platform */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x1000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) /* Compat define for old dma zone */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) #define MAX_DMA_ADDRESS ((unsigned long)__va(MAX_DMA_PFN << PAGE_SHIFT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) /* 8237 DMA controllers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) /* DMA controller registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) #define DMA1_CMD_REG 0x08 /* command register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) #define DMA1_STAT_REG 0x08 /* status register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #define DMA1_REQ_REG 0x09 /* request register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #define DMA1_MODE_REG 0x0B /* mode register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define DMA2_CMD_REG 0xD0 /* command register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) #define DMA2_STAT_REG 0xD0 /* status register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) #define DMA2_REQ_REG 0xD2 /* request register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define DMA2_MODE_REG 0xD6 /* mode register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) #define DMA_ADDR_0 0x00 /* DMA address registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #define DMA_ADDR_1 0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) #define DMA_ADDR_2 0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define DMA_ADDR_3 0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) #define DMA_ADDR_4 0xC0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #define DMA_ADDR_5 0xC4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) #define DMA_ADDR_6 0xC8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) #define DMA_ADDR_7 0xCC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #define DMA_CNT_0 0x01 /* DMA count registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) #define DMA_CNT_1 0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) #define DMA_CNT_2 0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) #define DMA_CNT_3 0x07
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) #define DMA_CNT_4 0xC2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #define DMA_CNT_5 0xC6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) #define DMA_CNT_6 0xCA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #define DMA_CNT_7 0xCE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) #define DMA_PAGE_0 0x87 /* DMA page registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #define DMA_PAGE_1 0x83
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define DMA_PAGE_2 0x81
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #define DMA_PAGE_3 0x82
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) #define DMA_PAGE_5 0x8B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) #define DMA_PAGE_6 0x89
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) #define DMA_PAGE_7 0x8A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) /* I/O to memory, no autoinit, increment, single mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) #define DMA_MODE_READ 0x44
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) /* memory to I/O, no autoinit, increment, single mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) #define DMA_MODE_WRITE 0x48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) /* pass thru DREQ->HRQ, DACK<-HLDA only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) #define DMA_MODE_CASCADE 0xC0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) #define DMA_AUTOINIT 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #ifdef CONFIG_ISA_DMA_API
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) extern spinlock_t dma_spin_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) static inline unsigned long claim_dma_lock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) spin_lock_irqsave(&dma_spin_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) return flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static inline void release_dma_lock(unsigned long flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) spin_unlock_irqrestore(&dma_spin_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) #endif /* CONFIG_ISA_DMA_API */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) /* enable/disable a specific DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) static inline void enable_dma(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) if (dmanr <= 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) dma_outb(dmanr, DMA1_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) dma_outb(dmanr & 3, DMA2_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) static inline void disable_dma(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) if (dmanr <= 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) dma_outb(dmanr | 4, DMA1_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) /* Clear the 'DMA Pointer Flip Flop'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) * Write 0 for LSB/MSB, 1 for MSB/LSB access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) * Use this once to initialize the FF to a known state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) * After that, keep track of it. :-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) * --- In order to do that, the DMA routines below should ---
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) * --- only be used while holding the DMA lock ! ---
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) static inline void clear_dma_ff(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) if (dmanr <= 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) dma_outb(0, DMA1_CLEAR_FF_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) dma_outb(0, DMA2_CLEAR_FF_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) /* set mode (above) for a specific DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) static inline void set_dma_mode(unsigned int dmanr, char mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) if (dmanr <= 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) dma_outb(mode | dmanr, DMA1_MODE_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) /* Set only the page register bits of the transfer address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) * This is used for successive transfers when we know the contents of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) * the lower 16 bits of the DMA current address register, but a 64k boundary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) * may have been crossed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) static inline void set_dma_page(unsigned int dmanr, char pagenr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) switch (dmanr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) dma_outb(pagenr, DMA_PAGE_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) dma_outb(pagenr, DMA_PAGE_1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) dma_outb(pagenr, DMA_PAGE_2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) dma_outb(pagenr, DMA_PAGE_3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) dma_outb(pagenr & 0xfe, DMA_PAGE_5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) dma_outb(pagenr & 0xfe, DMA_PAGE_6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) dma_outb(pagenr & 0xfe, DMA_PAGE_7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) /* Set transfer address & page bits for specific DMA channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) * Assumes dma flipflop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static inline void set_dma_addr(unsigned int dmanr, unsigned int a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) set_dma_page(dmanr, a>>16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) if (dmanr <= 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) dma_outb(a & 0xff, ((dmanr & 3) << 1) + IO_DMA1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) dma_outb((a >> 8) & 0xff, ((dmanr & 3) << 1) + IO_DMA1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) dma_outb((a >> 1) & 0xff, ((dmanr & 3) << 2) + IO_DMA2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) dma_outb((a >> 9) & 0xff, ((dmanr & 3) << 2) + IO_DMA2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) /* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) * a specific DMA channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) * You must ensure the parameters are valid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) * NOTE: from a manual: "the number of transfers is one more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) * than the initial word count"! This is taken into account.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) * Assumes dma flip-flop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) static inline void set_dma_count(unsigned int dmanr, unsigned int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) if (dmanr <= 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) dma_outb(count & 0xff, ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) dma_outb((count >> 8) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) dma_outb((count >> 1) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) dma_outb((count >> 9) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) /* Get DMA residue count. After a DMA transfer, this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) * should return zero. Reading this while a DMA transfer is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) * still in progress will return unpredictable results.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) * If called before the channel has been used, it may return 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) * Otherwise, it returns the number of _bytes_ left to transfer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * Assumes DMA flip-flop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) static inline int get_dma_residue(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) unsigned int io_port;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) /* using short to get 16-bit wrap around */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) unsigned short count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) io_port = (dmanr <= 3) ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) count = 1 + dma_inb(io_port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) count += dma_inb(io_port) << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) return (dmanr <= 3) ? count : (count << 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) /* These are in kernel/dma.c because x86 uses CONFIG_GENERIC_ISA_DMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) #ifdef CONFIG_ISA_DMA_API
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) extern int request_dma(unsigned int dmanr, const char *device_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) extern void free_dma(unsigned int dmanr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) /* From PCI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) #ifdef CONFIG_PCI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) extern int isa_dma_bridge_buggy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) #define isa_dma_bridge_buggy (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) #endif /* _ASM_X86_DMA_H */