Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 1991,1992 Linus Torvalds
*
* entry_32.S contains the system-call and low-level fault and trap handling routines.
*
* Stack layout while running C code:
* ptrace needs to have all registers on the stack.
* If the order here is changed, it needs to be
* updated in fork.c:copy_process(), signal.c:do_signal(),
* ptrace.c and ptrace.h
*
* 0(%esp) - %ebx
* 4(%esp) - %ecx
* 8(%esp) - %edx
* C(%esp) - %esi
* 10(%esp) - %edi
* 14(%esp) - %ebp
* 18(%esp) - %eax
* 1C(%esp) - %ds
* 20(%esp) - %es
* 24(%esp) - %fs
* 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
* 2C(%esp) - orig_eax
* 30(%esp) - %eip
* 34(%esp) - %cs
* 38(%esp) - %eflags
* 3C(%esp) - %oldesp
* 40(%esp) - %oldss
*/
#include <linux/linkage.h>
#include <linux/err.h>
#include <asm/thread_info.h>
#include <asm/irqflags.h>
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
#include <asm/percpu.h>
#include <asm/processor-flags.h>
#include <asm/irq_vectors.h>
#include <asm/cpufeatures.h>
#include <asm/alternative-asm.h>
#include <asm/asm.h>
#include <asm/smap.h>
#include <asm/frame.h>
#include <asm/trapnr.h>
#include <asm/nospec-branch.h>
#include "calling.h"
<------>.section .entry.text, "ax"
#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
/*
* User gs save/restore
*
* %gs is used for userland TLS and kernel only uses it for stack
* canary which is required to be at %gs:20 by gcc. Read the comment
* at the top of stackprotector.h for more info.
*
* Local labels 98 and 99 are used.
*/
#ifdef CONFIG_X86_32_LAZY_GS
/* unfortunately push/pop can't be no-op */
.macro PUSH_GS
<------>pushl $0
.endm
.macro POP_GS pop=0
<------>addl $(4 + \pop), %esp
.endm
.macro POP_GS_EX
.endm
/* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm
#else /* CONFIG_X86_32_LAZY_GS */
.macro PUSH_GS
<------>pushl %gs
.endm
.macro POP_GS pop=0
98: popl %gs
.if \pop <> 0
<------>add $\pop, %esp
.endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
99: movl $0, (%esp)
<------>jmp 98b
.popsection
<------>_ASM_EXTABLE(98b, 99b)
.endm
.macro PTGS_TO_GS
98: mov PT_GS(%esp), %gs
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
99: movl $0, PT_GS(%esp)
<------>jmp 98b
.popsection
<------>_ASM_EXTABLE(98b, 99b)
.endm
.macro GS_TO_REG reg
<------>movl %gs, \reg
.endm
.macro REG_TO_PTGS reg
<------>movl \reg, PT_GS(%esp)
.endm
.macro SET_KERNEL_GS reg
<------>movl $(__KERNEL_STACK_CANARY), \reg
<------>movl \reg, %gs
.endm
#endif /* CONFIG_X86_32_LAZY_GS */
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
<------>ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
<------>movl %cr3, \scratch_reg
<------>orl $PTI_SWITCH_MASK, \scratch_reg
<------>movl \scratch_reg, %cr3
.Lend_\@:
.endm
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
<------>ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
<------>.if \no_user_check == 0
<------>/* coming from usermode? */
<------>testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
<------>jz .Lend_\@
<------>.endif
<------>/* On user-cr3? */
<------>movl %cr3, %eax
<------>testl $PTI_SWITCH_MASK, %eax
<------>jnz .Lend_\@
<------>/* From userspace with kernel cr3 - BUG */
<------>ud2
.Lend_\@:
#endif
.endm
/*
* Switch to kernel cr3 if not already loaded and return current cr3 in
* \scratch_reg
*/
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
<------>ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
<------>movl %cr3, \scratch_reg
<------>/* Test if we are already on kernel CR3 */
<------>testl $PTI_SWITCH_MASK, \scratch_reg
<------>jz .Lend_\@
<------>andl $(~PTI_SWITCH_MASK), \scratch_reg
<------>movl \scratch_reg, %cr3
<------>/* Return original CR3 in \scratch_reg */
<------>orl $PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm
#define CS_FROM_ENTRY_STACK (1 << 31)
#define CS_FROM_USER_CR3 (1 << 30)
#define CS_FROM_KERNEL (1 << 29)
#define CS_FROM_ESPFIX (1 << 28)
.macro FIXUP_FRAME
<------>/*
<------> * The high bits of the CS dword (__csh) are used for CS_FROM_*.
<------> * Clear them in case hardware didn't do this for us.
<------> */
<------>andl $0x0000ffff, 4*4(%esp)
#ifdef CONFIG_VM86
<------>testl $X86_EFLAGS_VM, 5*4(%esp)
<------>jnz .Lfrom_usermode_no_fixup_\@
#endif
<------>testl $USER_SEGMENT_RPL_MASK, 4*4(%esp)
<------>jnz .Lfrom_usermode_no_fixup_\@
<------>orl $CS_FROM_KERNEL, 4*4(%esp)
<------>/*
<------> * When we're here from kernel mode; the (exception) stack looks like:
<------> *
<------> * 6*4(%esp) - <previous context>
<------> * 5*4(%esp) - flags
<------> * 4*4(%esp) - cs
<------> * 3*4(%esp) - ip
<------> * 2*4(%esp) - orig_eax
<------> * 1*4(%esp) - gs / function
<------> * 0*4(%esp) - fs
<------> *
<------> * Lets build a 5 entry IRET frame after that, such that struct pt_regs
<------> * is complete and in particular regs->sp is correct. This gives us
<------> * the original 6 enties as gap:
<------> *
<------> * 14*4(%esp) - <previous context>
<------> * 13*4(%esp) - gap / flags
<------> * 12*4(%esp) - gap / cs
<------> * 11*4(%esp) - gap / ip
<------> * 10*4(%esp) - gap / orig_eax
<------> * 9*4(%esp) - gap / gs / function
<------> * 8*4(%esp) - gap / fs
<------> * 7*4(%esp) - ss
<------> * 6*4(%esp) - sp
<------> * 5*4(%esp) - flags
<------> * 4*4(%esp) - cs
<------> * 3*4(%esp) - ip
<------> * 2*4(%esp) - orig_eax
<------> * 1*4(%esp) - gs / function
<------> * 0*4(%esp) - fs
<------> */
<------>pushl %ss # ss
<------>pushl %esp # sp (points at ss)
<------>addl $7*4, (%esp) # point sp back at the previous context
<------>pushl 7*4(%esp) # flags
<------>pushl 7*4(%esp) # cs
<------>pushl 7*4(%esp) # ip
<------>pushl 7*4(%esp) # orig_eax
<------>pushl 7*4(%esp) # gs / function
<------>pushl 7*4(%esp) # fs
.Lfrom_usermode_no_fixup_\@:
.endm
.macro IRET_FRAME
<------>/*
<------> * We're called with %ds, %es, %fs, and %gs from the interrupted
<------> * frame, so we shouldn't use them. Also, we may be in ESPFIX
<------> * mode and therefore have a nonzero SS base and an offset ESP,
<------> * so any attempt to access the stack needs to use SS. (except for
<------> * accesses through %esp, which automatically use SS.)
<------> */
<------>testl $CS_FROM_KERNEL, 1*4(%esp)
<------>jz .Lfinished_frame_\@
<------>/*
<------> * Reconstruct the 3 entry IRET frame right after the (modified)
<------> * regs->sp without lowering %esp in between, such that an NMI in the
<------> * middle doesn't scribble our stack.
<------> */
<------>pushl %eax
<------>pushl %ecx
<------>movl 5*4(%esp), %eax # (modified) regs->sp
<------>movl 4*4(%esp), %ecx # flags
<------>movl %ecx, %ss:-1*4(%eax)
<------>movl 3*4(%esp), %ecx # cs
<------>andl $0x0000ffff, %ecx
<------>movl %ecx, %ss:-2*4(%eax)
<------>movl 2*4(%esp), %ecx # ip
<------>movl %ecx, %ss:-3*4(%eax)
<------>movl 1*4(%esp), %ecx # eax
<------>movl %ecx, %ss:-4*4(%eax)
<------>popl %ecx
<------>lea -4*4(%eax), %esp
<------>popl %eax
.Lfinished_frame_\@:
.endm
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
<------>cld
.if \skip_gs == 0
<------>PUSH_GS
.endif
<------>pushl %fs
<------>pushl %eax
<------>movl $(__KERNEL_PERCPU), %eax
<------>movl %eax, %fs
.if \unwind_espfix > 0
<------>UNWIND_ESPFIX_STACK
.endif
<------>popl %eax
<------>FIXUP_FRAME
<------>pushl %es
<------>pushl %ds
<------>pushl \pt_regs_ax
<------>pushl %ebp
<------>pushl %edi
<------>pushl %esi
<------>pushl %edx
<------>pushl %ecx
<------>pushl %ebx
<------>movl $(__USER_DS), %edx
<------>movl %edx, %ds
<------>movl %edx, %es
.if \skip_gs == 0
<------>SET_KERNEL_GS %edx
.endif
<------>/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
<------>SWITCH_TO_KERNEL_STACK
.endif
.endm
.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
<------>SAVE_ALL unwind_espfix=\unwind_espfix
<------>BUG_IF_WRONG_CR3
<------>/*
<------> * Now switch the CR3 when PTI is enabled.
<------> *
<------> * We can enter with either user or kernel cr3, the code will
<------> * store the old cr3 in \cr3_reg and switches to the kernel cr3
<------> * if necessary.
<------> */
<------>SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
.Lend_\@:
.endm
.macro RESTORE_INT_REGS
<------>popl %ebx
<------>popl %ecx
<------>popl %edx
<------>popl %esi
<------>popl %edi
<------>popl %ebp
<------>popl %eax
.endm
.macro RESTORE_REGS pop=0
<------>RESTORE_INT_REGS
1: popl %ds
2: popl %es
3: popl %fs
<------>POP_GS \pop
<------>IRET_FRAME
.pushsection .fixup, "ax"
4: movl $0, (%esp)
<------>jmp 1b
5: movl $0, (%esp)
<------>jmp 2b
6: movl $0, (%esp)
<------>jmp 3b
.popsection
<------>_ASM_EXTABLE(1b, 4b)
<------>_ASM_EXTABLE(2b, 5b)
<------>_ASM_EXTABLE(3b, 6b)
<------>POP_GS_EX
.endm
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
<------>/*
<------> * Now switch the CR3 when PTI is enabled.
<------> *
<------> * We enter with kernel cr3 and switch the cr3 to the value
<------> * stored on \cr3_reg, which is either a user or a kernel cr3.
<------> */
<------>ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
<------>testl $PTI_SWITCH_MASK, \cr3_reg
<------>jz .Lswitched_\@
<------>/* User cr3 in \cr3_reg - write it to hardware cr3 */
<------>movl \cr3_reg, %cr3
.Lswitched_\@:
<------>BUG_IF_WRONG_CR3
<------>RESTORE_REGS pop=\pop
.endm
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
<------>ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
<------>movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
<------>/*
<------> * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
<------> * are returning to the kernel.
<------> * See comments in process.c:copy_thread() for details.
<------> */
<------>movb PT_OLDSS(%esp), %ah
<------>movb PT_CS(%esp), %al
<------>andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
<------>cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
<------>jne .Lend_\@ # returning to user-space with LDT SS
<------>/*
<------> * Setup and switch to ESPFIX stack
<------> *
<------> * We're returning to userspace with a 16 bit stack. The CPU will not
<------> * restore the high word of ESP for us on executing iret... This is an
<------> * "official" bug of all the x86-compatible CPUs, which we can work
<------> * around to make dosemu and wine happy. We do this by preloading the
<------> * high word of ESP with the high word of the userspace ESP while
<------> * compensating for the offset by changing to the ESPFIX segment with
<------> * a base address that matches for the difference.
<------> */
<------>mov %esp, %edx /* load kernel esp */
<------>mov PT_OLDESP(%esp), %eax /* load userspace esp */
<------>mov %dx, %ax /* eax: new kernel esp */
<------>sub %eax, %edx /* offset (low word is 0) */
<------>shr $16, %edx
<------>mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
<------>mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
<------>pushl $__ESPFIX_SS
<------>pushl %eax /* new kernel esp */
<------>/*
<------> * Disable interrupts, but do not irqtrace this section: we
<------> * will soon execute iret and the tracer was already set to
<------> * the irqstate after the IRET:
<------> */
<------>DISABLE_INTERRUPTS(CLBR_ANY)
<------>lss (%esp), %esp /* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
/*
* Called with pt_regs fully populated and kernel segments loaded,
* so we can access PER_CPU and use the integer registers.
*
* We need to be very careful here with the %esp switch, because an NMI
* can happen everywhere. If the NMI handler finds itself on the
* entry-stack, it will overwrite the task-stack and everything we
* copied there. So allocate the stack-frame on the task-stack and
* switch to it before we do any copying.
*/
.macro SWITCH_TO_KERNEL_STACK
<------>BUG_IF_WRONG_CR3
<------>SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
<------>/*
<------> * %eax now contains the entry cr3 and we carry it forward in
<------> * that register for the time this macro runs
<------> */
<------>/* Are we on the entry stack? Bail out if not! */
<------>movl PER_CPU_VAR(cpu_entry_area), %ecx
<------>addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
<------>subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
<------>cmpl $SIZEOF_entry_stack, %ecx
<------>jae .Lend_\@
<------>/* Load stack pointer into %esi and %edi */
<------>movl %esp, %esi
<------>movl %esi, %edi
<------>/* Move %edi to the top of the entry stack */
<------>andl $(MASK_entry_stack), %edi
<------>addl $(SIZEOF_entry_stack), %edi
<------>/* Load top of task-stack into %edi */
<------>movl TSS_entry2task_stack(%edi), %edi
<------>/* Special case - entry from kernel mode via entry stack */
#ifdef CONFIG_VM86
<------>movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
<------>movb PT_CS(%esp), %cl
<------>andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
<------>movl PT_CS(%esp), %ecx
<------>andl $SEGMENT_RPL_MASK, %ecx
#endif
<------>cmpl $USER_RPL, %ecx
<------>jb .Lentry_from_kernel_\@
<------>/* Bytes to copy */
<------>movl $PTREGS_SIZE, %ecx
#ifdef CONFIG_VM86
<------>testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
<------>jz .Lcopy_pt_regs_\@
<------>/*
<------> * Stack-frame contains 4 additional segment registers when
<------> * coming from VM86 mode
<------> */
<------>addl $(4 * 4), %ecx
#endif
.Lcopy_pt_regs_\@:
<------>/* Allocate frame on task-stack */
<------>subl %ecx, %edi
<------>/* Switch to task-stack */
<------>movl %edi, %esp
<------>/*
<------> * We are now on the task-stack and can safely copy over the
<------> * stack-frame
<------> */
<------>shrl $2, %ecx
<------>cld
<------>rep movsl
<------>jmp .Lend_\@
.Lentry_from_kernel_\@:
<------>/*
<------> * This handles the case when we enter the kernel from
<------> * kernel-mode and %esp points to the entry-stack. When this
<------> * happens we need to switch to the task-stack to run C code,
<------> * but switch back to the entry-stack again when we approach
<------> * iret and return to the interrupted code-path. This usually
<------> * happens when we hit an exception while restoring user-space
<------> * segment registers on the way back to user-space or when the
<------> * sysenter handler runs with eflags.tf set.
<------> *
<------> * When we switch to the task-stack here, we can't trust the
<------> * contents of the entry-stack anymore, as the exception handler
<------> * might be scheduled out or moved to another CPU. Therefore we
<------> * copy the complete entry-stack to the task-stack and set a
<------> * marker in the iret-frame (bit 31 of the CS dword) to detect
<------> * what we've done on the iret path.
<------> *
<------> * On the iret path we copy everything back and switch to the
<------> * entry-stack, so that the interrupted kernel code-path
<------> * continues on the same stack it was interrupted with.
<------> *
<------> * Be aware that an NMI can happen anytime in this code.
<------> *
<------> * %esi: Entry-Stack pointer (same as %esp)
<------> * %edi: Top of the task stack
<------> * %eax: CR3 on kernel entry
<------> */
<------>/* Calculate number of bytes on the entry stack in %ecx */
<------>movl %esi, %ecx
<------>/* %ecx to the top of entry-stack */
<------>andl $(MASK_entry_stack), %ecx
<------>addl $(SIZEOF_entry_stack), %ecx
<------>/* Number of bytes on the entry stack to %ecx */
<------>sub %esi, %ecx
<------>/* Mark stackframe as coming from entry stack */
<------>orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
<------>/*
<------> * Test the cr3 used to enter the kernel and add a marker
<------> * so that we can switch back to it before iret.
<------> */
<------>testl $PTI_SWITCH_MASK, %eax
<------>jz .Lcopy_pt_regs_\@
<------>orl $CS_FROM_USER_CR3, PT_CS(%esp)
<------>/*
<------> * %esi and %edi are unchanged, %ecx contains the number of
<------> * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
<------> * the stack-frame on task-stack and copy everything over
<------> */
<------>jmp .Lcopy_pt_regs_\@
.Lend_\@:
.endm
/*
* Switch back from the kernel stack to the entry stack.
*
* The %esp register must point to pt_regs on the task stack. It will
* first calculate the size of the stack-frame to copy, depending on
* whether we return to VM86 mode or not. With that it uses 'rep movsl'
* to copy the contents of the stack over to the entry stack.
*
* We must be very careful here, as we can't trust the contents of the
* task-stack once we switched to the entry-stack. When an NMI happens
* while on the entry-stack, the NMI handler will switch back to the top
* of the task stack, overwriting our stack-frame we are about to copy.
* Therefore we switch the stack only after everything is copied over.
*/
.macro SWITCH_TO_ENTRY_STACK
<------>/* Bytes to copy */
<------>movl $PTREGS_SIZE, %ecx
#ifdef CONFIG_VM86
<------>testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
<------>jz .Lcopy_pt_regs_\@
<------>/* Additional 4 registers to copy when returning to VM86 mode */
<------>addl $(4 * 4), %ecx
.Lcopy_pt_regs_\@:
#endif
<------>/* Initialize source and destination for movsl */
<------>movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
<------>subl %ecx, %edi
<------>movl %esp, %esi
<------>/* Save future stack pointer in %ebx */
<------>movl %edi, %ebx
<------>/* Copy over the stack-frame */
<------>shrl $2, %ecx
<------>cld
<------>rep movsl
<------>/*
<------> * Switch to entry-stack - needs to happen after everything is
<------> * copied because the NMI handler will overwrite the task-stack
<------> * when on entry-stack
<------> */
<------>movl %ebx, %esp
.Lend_\@:
.endm
/*
* This macro handles the case when we return to kernel-mode on the iret
* path and have to switch back to the entry stack and/or user-cr3
*
* See the comments below the .Lentry_from_kernel_\@ label in the
* SWITCH_TO_KERNEL_STACK macro for more details.
*/
.macro PARANOID_EXIT_TO_KERNEL_MODE
<------>/*
<------> * Test if we entered the kernel with the entry-stack. Most
<------> * likely we did not, because this code only runs on the
<------> * return-to-kernel path.
<------> */
<------>testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
<------>jz .Lend_\@
<------>/* Unlikely slow-path */
<------>/* Clear marker from stack-frame */
<------>andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
<------>/* Copy the remaining task-stack contents to entry-stack */
<------>movl %esp, %esi
<------>movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
<------>/* Bytes on the task-stack to ecx */
<------>movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
<------>subl %esi, %ecx
<------>/* Allocate stack-frame on entry-stack */
<------>subl %ecx, %edi
<------>/*
<------> * Save future stack-pointer, we must not switch until the
<------> * copy is done, otherwise the NMI handler could destroy the
<------> * contents of the task-stack we are about to copy.
<------> */
<------>movl %edi, %ebx
<------>/* Do the copy */
<------>shrl $2, %ecx
<------>cld
<------>rep movsl
<------>/* Safe to switch to entry-stack now */
<------>movl %ebx, %esp
<------>/*
<------> * We came from entry-stack and need to check if we also need to
<------> * switch back to user cr3.
<------> */
<------>testl $CS_FROM_USER_CR3, PT_CS(%esp)
<------>jz .Lend_\@
<------>/* Clear marker from stack-frame */
<------>andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
<------>SWITCH_TO_USER_CR3 scratch_reg=%eax
.Lend_\@:
.endm
/**
* idtentry - Macro to generate entry stubs for simple IDT entries
* @vector: Vector number
* @asmsym: ASM symbol for the entry point
* @cfunc: C function to be called
* @has_error_code: Hardware pushed error code on stack
*/
.macro idtentry vector asmsym cfunc has_error_code:req
SYM_CODE_START(\asmsym)
<------>ASM_CLAC
<------>cld
<------>.if \has_error_code == 0
<------><------>pushl $0 /* Clear the error code */
<------>.endif
<------>/* Push the C-function address into the GS slot */
<------>pushl $\cfunc
<------>/* Invoke the common exception entry */
<------>jmp handle_exception
SYM_CODE_END(\asmsym)
.endm
.macro idtentry_irq vector cfunc
<------>.p2align CONFIG_X86_L1_CACHE_SHIFT
SYM_CODE_START_LOCAL(asm_\cfunc)
<------>ASM_CLAC
<------>SAVE_ALL switch_stacks=1
<------>ENCODE_FRAME_POINTER
<------>movl %esp, %eax
<------>movl PT_ORIG_EAX(%esp), %edx /* get the vector from stack */
<------>movl $-1, PT_ORIG_EAX(%esp) /* no syscall to restart */
<------>call \cfunc
<------>jmp handle_exception_return
SYM_CODE_END(asm_\cfunc)
.endm
.macro idtentry_sysvec vector cfunc
<------>idtentry \vector asm_\cfunc \cfunc has_error_code=0
.endm
/*
* Include the defines which emit the idt entries which are shared
* shared between 32 and 64 bit and emit the __irqentry_text_* markers
* so the stacktrace boundary checks work.
*/
<------>.align 16
<------>.globl __irqentry_text_start
__irqentry_text_start:
#include <asm/idtentry.h>
<------>.align 16
<------>.globl __irqentry_text_end
__irqentry_text_end:
/*
* %eax: prev task
* %edx: next task
*/
.pushsection .text, "ax"
SYM_CODE_START(__switch_to_asm)
<------>/*
<------> * Save callee-saved registers
<------> * This must match the order in struct inactive_task_frame
<------> */
<------>pushl %ebp
<------>pushl %ebx
<------>pushl %edi
<------>pushl %esi
<------>/*
<------> * Flags are saved to prevent AC leakage. This could go
<------> * away if objtool would have 32bit support to verify
<------> * the STAC/CLAC correctness.
<------> */
<------>pushfl
<------>/* switch stack */
<------>movl %esp, TASK_threadsp(%eax)
<------>movl TASK_threadsp(%edx), %esp
#ifdef CONFIG_STACKPROTECTOR
<------>movl TASK_stack_canary(%edx), %ebx
<------>movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif
#ifdef CONFIG_RETPOLINE
<------>/*
<------> * When switching from a shallower to a deeper call stack
<------> * the RSB may either underflow or use entries populated
<------> * with userspace addresses. On CPUs where those concerns
<------> * exist, overwrite the RSB with entries which capture
<------> * speculative execution to prevent attack.
<------> */
<------>FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
#endif
<------>/* Restore flags or the incoming task to restore AC state. */
<------>popfl
<------>/* restore callee-saved registers */
<------>popl %esi
<------>popl %edi
<------>popl %ebx
<------>popl %ebp
<------>jmp __switch_to
SYM_CODE_END(__switch_to_asm)
.popsection
/*
* The unwinder expects the last frame on the stack to always be at the same
* offset from the end of the page, which allows it to validate the stack.
* Calling schedule_tail() directly would break that convention because its an
* asmlinkage function so its argument has to be pushed on the stack. This
* wrapper creates a proper "end of stack" frame header before the call.
*/
.pushsection .text, "ax"
SYM_FUNC_START(schedule_tail_wrapper)
<------>FRAME_BEGIN
<------>pushl %eax
<------>call schedule_tail
<------>popl %eax
<------>FRAME_END
<------>ret
SYM_FUNC_END(schedule_tail_wrapper)
.popsection
/*
* A newly forked process directly context switches into this address.
*
* eax: prev task we switched from
* ebx: kernel thread func (NULL for user thread)
* edi: kernel thread arg
*/
.pushsection .text, "ax"
SYM_CODE_START(ret_from_fork)
<------>call schedule_tail_wrapper
<------>testl %ebx, %ebx
<------>jnz 1f /* kernel threads are uncommon */
2:
<------>/* When we fork, we trace the syscall return in the child, too. */
<------>movl %esp, %eax
<------>call syscall_exit_to_user_mode
<------>jmp .Lsyscall_32_done
<------>/* kernel thread */
1: movl %edi, %eax
<------>CALL_NOSPEC ebx
<------>/*
<------> * A kernel thread is allowed to return here after successfully
<------> * calling kernel_execve(). Exit to userspace to complete the execve()
<------> * syscall.
<------> */
<------>movl $0, PT_EAX(%esp)
<------>jmp 2b
SYM_CODE_END(ret_from_fork)
.popsection
SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
/*
* All code from here through __end_SYSENTER_singlestep_region is subject
* to being single-stepped if a user program sets TF and executes SYSENTER.
* There is absolutely nothing that we can do to prevent this from happening
* (thanks Intel!). To keep our handling of this situation as simple as
* possible, we handle TF just like AC and NT, except that our #DB handler
* will ignore all of the single-step traps generated in this range.
*/
/*
* 32-bit SYSENTER entry.
*
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
* if X86_FEATURE_SEP is available. This is the preferred system call
* entry on 32-bit systems.
*
* The SYSENTER instruction, in principle, should *only* occur in the
* vDSO. In practice, a small number of Android devices were shipped
* with a copy of Bionic that inlined a SYSENTER instruction. This
* never happened in any of Google's Bionic versions -- it only happened
* in a narrow range of Intel-provided versions.
*
* SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
* IF and VM in RFLAGS are cleared (IOW: interrupts are off).
* SYSENTER does not save anything on the stack,
* and does not save old EIP (!!!), ESP, or EFLAGS.
*
* To avoid losing track of EFLAGS.VM (and thus potentially corrupting
* user and/or vm86 state), we explicitly disable the SYSENTER
* instruction in vm86 mode by reprogramming the MSRs.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp user stack
* 0(%ebp) arg6
*/
SYM_FUNC_START(entry_SYSENTER_32)
<------>/*
<------> * On entry-stack with all userspace-regs live - save and
<------> * restore eflags and %eax to use it as scratch-reg for the cr3
<------> * switch.
<------> */
<------>pushfl
<------>pushl %eax
<------>BUG_IF_WRONG_CR3 no_user_check=1
<------>SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
<------>popl %eax
<------>popfl
<------>/* Stack empty again, switch to task stack */
<------>movl TSS_entry2task_stack(%esp), %esp
.Lsysenter_past_esp:
<------>pushl $__USER_DS /* pt_regs->ss */
<------>pushl $0 /* pt_regs->sp (placeholder) */
<------>pushfl /* pt_regs->flags (except IF = 0) */
<------>pushl $__USER_CS /* pt_regs->cs */
<------>pushl $0 /* pt_regs->ip = 0 (placeholder) */
<------>pushl %eax /* pt_regs->orig_ax */
<------>SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
<------>/*
<------> * SYSENTER doesn't filter flags, so we need to clear NT, AC
<------> * and TF ourselves. To save a few cycles, we can check whether
<------> * either was set instead of doing an unconditional popfq.
<------> * This needs to happen before enabling interrupts so that
<------> * we don't get preempted with NT set.
<------> *
<------> * If TF is set, we will single-step all the way to here -- do_debug
<------> * will ignore all the traps. (Yes, this is slow, but so is
<------> * single-stepping in general. This allows us to avoid having
<------> * a more complicated code to handle the case where a user program
<------> * forces us to single-step through the SYSENTER entry code.)
<------> *
<------> * NB.: .Lsysenter_fix_flags is a label with the code under it moved
<------> * out-of-line as an optimization: NT is unlikely to be set in the
<------> * majority of the cases and instead of polluting the I$ unnecessarily,
<------> * we're keeping that code behind a branch which will predict as
<------> * not-taken and therefore its instructions won't be fetched.
<------> */
<------>testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
<------>jnz .Lsysenter_fix_flags
.Lsysenter_flags_fixed:
<------>movl %esp, %eax
<------>call do_SYSENTER_32
<------>testl %eax, %eax
<------>jz .Lsyscall_32_done
<------>STACKLEAK_ERASE
<------>/* Opportunistic SYSEXIT */
<------>/*
<------> * Setup entry stack - we keep the pointer in %eax and do the
<------> * switch after almost all user-state is restored.
<------> */
<------>/* Load entry stack pointer and allocate frame for eflags/eax */
<------>movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
<------>subl $(2*4), %eax
<------>/* Copy eflags and eax to entry stack */
<------>movl PT_EFLAGS(%esp), %edi
<------>movl PT_EAX(%esp), %esi
<------>movl %edi, (%eax)
<------>movl %esi, 4(%eax)
<------>/* Restore user registers and segments */
<------>movl PT_EIP(%esp), %edx /* pt_regs->ip */
<------>movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
1: mov PT_FS(%esp), %fs
<------>PTGS_TO_GS
<------>popl %ebx /* pt_regs->bx */
<------>addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
<------>popl %esi /* pt_regs->si */
<------>popl %edi /* pt_regs->di */
<------>popl %ebp /* pt_regs->bp */
<------>/* Switch to entry stack */
<------>movl %eax, %esp
<------>/* Now ready to switch the cr3 */
<------>SWITCH_TO_USER_CR3 scratch_reg=%eax
<------>/*
<------> * Restore all flags except IF. (We restore IF separately because
<------> * STI gives a one-instruction window in which we won't be interrupted,
<------> * whereas POPF does not.)
<------> */
<------>btrl $X86_EFLAGS_IF_BIT, (%esp)
<------>BUG_IF_WRONG_CR3 no_user_check=1
<------>popfl
<------>popl %eax
<------>/*
<------> * Return back to the vDSO, which will pop ecx and edx.
<------> * Don't bother with DS and ES (they already contain __USER_DS).
<------> */
<------>sti
<------>sysexit
.pushsection .fixup, "ax"
2: movl $0, PT_FS(%esp)
<------>jmp 1b
.popsection
<------>_ASM_EXTABLE(1b, 2b)
<------>PTGS_TO_GS_EX
.Lsysenter_fix_flags:
<------>pushl $X86_EFLAGS_FIXED
<------>popfl
<------>jmp .Lsysenter_flags_fixed
SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
SYM_FUNC_END(entry_SYSENTER_32)
/*
* 32-bit legacy system call entry.
*
* 32-bit x86 Linux system calls traditionally used the INT $0x80
* instruction. INT $0x80 lands here.
*
* This entry point can be used by any 32-bit perform system calls.
* Instances of INT $0x80 can be found inline in various programs and
* libraries. It is also used by the vDSO's __kernel_vsyscall
* fallback for hardware that doesn't support a faster entry method.
* Restarted 32-bit system calls also fall back to INT $0x80
* regardless of what instruction was originally used to do the system
* call. (64-bit programs can use INT $0x80 as well, but they can
* only run on 64-bit kernels and therefore land in
* entry_INT80_compat.)
*
* This is considered a slow path. It is not used by most libc
* implementations on modern hardware except during process startup.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp arg6
*/
SYM_FUNC_START(entry_INT80_32)
<------>ASM_CLAC
<------>pushl %eax /* pt_regs->orig_ax */
<------>SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
<------>movl %esp, %eax
<------>call do_int80_syscall_32
.Lsyscall_32_done:
<------>STACKLEAK_ERASE
restore_all_switch_stack:
<------>SWITCH_TO_ENTRY_STACK
<------>CHECK_AND_APPLY_ESPFIX
<------>/* Switch back to user CR3 */
<------>SWITCH_TO_USER_CR3 scratch_reg=%eax
<------>BUG_IF_WRONG_CR3
<------>/* Restore user state */
<------>RESTORE_REGS pop=4 # skip orig_eax/error_code
.Lirq_return:
<------>/*
<------> * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
<------> * when returning from IPI handler and when returning from
<------> * scheduler to user-space.
<------> */
<------>INTERRUPT_RETURN
.section .fixup, "ax"
SYM_CODE_START(asm_iret_error)
<------>pushl $0 # no error code
<------>pushl $iret_error
#ifdef CONFIG_DEBUG_ENTRY
<------>/*
<------> * The stack-frame here is the one that iret faulted on, so its a
<------> * return-to-user frame. We are on kernel-cr3 because we come here from
<------> * the fixup code. This confuses the CR3 checker, so switch to user-cr3
<------> * as the checker expects it.
<------> */
<------>pushl %eax
<------>SWITCH_TO_USER_CR3 scratch_reg=%eax
<------>popl %eax
#endif
<------>jmp handle_exception
SYM_CODE_END(asm_iret_error)
.previous
<------>_ASM_EXTABLE(.Lirq_return, asm_iret_error)
SYM_FUNC_END(entry_INT80_32)
.macro FIXUP_ESPFIX_STACK
/*
* Switch back for ESPFIX stack to the normal zerobased stack
*
* We can't call C functions using the ESPFIX stack. This code reads
* the high word of the segment base from the GDT and swiches to the
* normal stack and adjusts ESP with the matching offset.
*
* We might be on user CR3 here, so percpu data is not mapped and we can't
* access the GDT through the percpu segment. Instead, use SGDT to find
* the cpu_entry_area alias of the GDT.
*/
#ifdef CONFIG_X86_ESPFIX32
<------>/* fixup the stack */
<------>pushl %ecx
<------>subl $2*4, %esp
<------>sgdt (%esp)
<------>movl 2(%esp), %ecx /* GDT address */
<------>/*
<------> * Careful: ECX is a linear pointer, so we need to force base
<------> * zero. %cs is the only known-linear segment we have right now.
<------> */
<------>mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */
<------>mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */
<------>shl $16, %eax
<------>addl $2*4, %esp
<------>popl %ecx
<------>addl %esp, %eax /* the adjusted stack pointer */
<------>pushl $__KERNEL_DS
<------>pushl %eax
<------>lss (%esp), %esp /* switch to the normal stack segment */
#endif
.endm
.macro UNWIND_ESPFIX_STACK
<------>/* It's safe to clobber %eax, all other regs need to be preserved */
#ifdef CONFIG_X86_ESPFIX32
<------>movl %ss, %eax
<------>/* see if on espfix stack */
<------>cmpw $__ESPFIX_SS, %ax
<------>jne .Lno_fixup_\@
<------>/* switch to normal stack */
<------>FIXUP_ESPFIX_STACK
.Lno_fixup_\@:
#endif
.endm
SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
<------>/* the function address is in %gs's slot on the stack */
<------>SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
<------>ENCODE_FRAME_POINTER
<------>/* fixup %gs */
<------>GS_TO_REG %ecx
<------>movl PT_GS(%esp), %edi # get the function address
<------>REG_TO_PTGS %ecx
<------>SET_KERNEL_GS %ecx
<------>/* fixup orig %eax */
<------>movl PT_ORIG_EAX(%esp), %edx # get the error code
<------>movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
<------>movl %esp, %eax # pt_regs pointer
<------>CALL_NOSPEC edi
handle_exception_return:
#ifdef CONFIG_VM86
<------>movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
<------>movb PT_CS(%esp), %al
<------>andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
#else
<------>/*
<------> * We can be coming here from child spawned by kernel_thread().
<------> */
<------>movl PT_CS(%esp), %eax
<------>andl $SEGMENT_RPL_MASK, %eax
#endif
<------>cmpl $USER_RPL, %eax # returning to v8086 or userspace ?
<------>jnb ret_to_user
<------>PARANOID_EXIT_TO_KERNEL_MODE
<------>BUG_IF_WRONG_CR3
<------>RESTORE_REGS 4
<------>jmp .Lirq_return
ret_to_user:
<------>movl %esp, %eax
<------>jmp restore_all_switch_stack
SYM_CODE_END(handle_exception)
SYM_CODE_START(asm_exc_double_fault)
1:
<------>/*
<------> * This is a task gate handler, not an interrupt gate handler.
<------> * The error code is on the stack, but the stack is otherwise
<------> * empty. Interrupts are off. Our state is sane with the following
<------> * exceptions:
<------> *
<------> * - CR0.TS is set. "TS" literally means "task switched".
<------> * - EFLAGS.NT is set because we're a "nested task".
<------> * - The doublefault TSS has back_link set and has been marked busy.
<------> * - TR points to the doublefault TSS and the normal TSS is busy.
<------> * - CR3 is the normal kernel PGD. This would be delightful, except
<------> * that the CPU didn't bother to save the old CR3 anywhere. This
<------> * would make it very awkward to return back to the context we came
<------> * from.
<------> *
<------> * The rest of EFLAGS is sanitized for us, so we don't need to
<------> * worry about AC or DF.
<------> *
<------> * Don't even bother popping the error code. It's always zero,
<------> * and ignoring it makes us a bit more robust against buggy
<------> * hypervisor task gate implementations.
<------> *
<------> * We will manually undo the task switch instead of doing a
<------> * task-switching IRET.
<------> */
<------>clts /* clear CR0.TS */
<------>pushl $X86_EFLAGS_FIXED
<------>popfl /* clear EFLAGS.NT */
<------>call doublefault_shim
<------>/* We don't support returning, so we have no IRET here. */
1:
<------>hlt
<------>jmp 1b
SYM_CODE_END(asm_exc_double_fault)
/*
* NMI is doubly nasty. It can happen on the first instruction of
* entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
* of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
* switched stacks. We handle both conditions by simply checking whether we
* interrupted kernel code running on the SYSENTER stack.
*/
SYM_CODE_START(asm_exc_nmi)
<------>ASM_CLAC
#ifdef CONFIG_X86_ESPFIX32
<------>/*
<------> * ESPFIX_SS is only ever set on the return to user path
<------> * after we've switched to the entry stack.
<------> */
<------>pushl %eax
<------>movl %ss, %eax
<------>cmpw $__ESPFIX_SS, %ax
<------>popl %eax
<------>je .Lnmi_espfix_stack
#endif
<------>pushl %eax # pt_regs->orig_ax
<------>SAVE_ALL_NMI cr3_reg=%edi
<------>ENCODE_FRAME_POINTER
<------>xorl %edx, %edx # zero error code
<------>movl %esp, %eax # pt_regs pointer
<------>/* Are we currently on the SYSENTER stack? */
<------>movl PER_CPU_VAR(cpu_entry_area), %ecx
<------>addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
<------>subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
<------>cmpl $SIZEOF_entry_stack, %ecx
<------>jb .Lnmi_from_sysenter_stack
<------>/* Not on SYSENTER stack. */
<------>call exc_nmi
<------>jmp .Lnmi_return
.Lnmi_from_sysenter_stack:
<------>/*
<------> * We're on the SYSENTER stack. Switch off. No one (not even debug)
<------> * is using the thread stack right now, so it's safe for us to use it.
<------> */
<------>movl %esp, %ebx
<------>movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
<------>call exc_nmi
<------>movl %ebx, %esp
.Lnmi_return:
#ifdef CONFIG_X86_ESPFIX32
<------>testl $CS_FROM_ESPFIX, PT_CS(%esp)
<------>jnz .Lnmi_from_espfix
#endif
<------>CHECK_AND_APPLY_ESPFIX
<------>RESTORE_ALL_NMI cr3_reg=%edi pop=4
<------>jmp .Lirq_return
#ifdef CONFIG_X86_ESPFIX32
.Lnmi_espfix_stack:
<------>/*
<------> * Create the pointer to LSS back
<------> */
<------>pushl %ss
<------>pushl %esp
<------>addl $4, (%esp)
<------>/* Copy the (short) IRET frame */
<------>pushl 4*4(%esp) # flags
<------>pushl 4*4(%esp) # cs
<------>pushl 4*4(%esp) # ip
<------>pushl %eax # orig_ax
<------>SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
<------>ENCODE_FRAME_POINTER
<------>/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
<------>xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
<------>xorl %edx, %edx # zero error code
<------>movl %esp, %eax # pt_regs pointer
<------>jmp .Lnmi_from_sysenter_stack
.Lnmi_from_espfix:
<------>RESTORE_ALL_NMI cr3_reg=%edi
<------>/*
<------> * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
<------> * fix up the gap and long frame:
<------> *
<------> * 3 - original frame (exception)
<------> * 2 - ESPFIX block (above)
<------> * 6 - gap (FIXUP_FRAME)
<------> * 5 - long frame (FIXUP_FRAME)
<------> * 1 - orig_ax
<------> */
<------>lss (1+5+6)*4(%esp), %esp # back to espfix stack
<------>jmp .Lirq_return
#endif
SYM_CODE_END(asm_exc_nmi)
.pushsection .text, "ax"
SYM_CODE_START(rewind_stack_do_exit)
<------>/* Prevent any naive code from trying to unwind to our caller. */
<------>xorl %ebp, %ebp
<------>movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
<------>leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
<------>call do_exit
1: jmp 1b
SYM_CODE_END(rewind_stack_do_exit)
.popsection