^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) ########################################################################
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) # Implement fast SHA-512 with AVX instructions. (x86_64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) # Copyright (C) 2013 Intel Corporation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) # Authors:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) # James Guilford <james.guilford@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) # Kirk Yap <kirk.s.yap@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) # David Cote <david.m.cote@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) # Tim Chen <tim.c.chen@linux.intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) # This software is available to you under a choice of one of two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) # licenses. You may choose to be licensed under the terms of the GNU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) # General Public License (GPL) Version 2, available from the file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) # COPYING in the main directory of this source tree, or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) # OpenIB.org BSD license below:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) # Redistribution and use in source and binary forms, with or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) # without modification, are permitted provided that the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) # conditions are met:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) # - Redistributions of source code must retain the above
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) # copyright notice, this list of conditions and the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) # disclaimer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) # - Redistributions in binary form must reproduce the above
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) # copyright notice, this list of conditions and the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) # disclaimer in the documentation and/or other materials
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) # provided with the distribution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) # SOFTWARE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) ########################################################################
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) # This code is described in an Intel White-Paper:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) # "Fast SHA-512 Implementations on Intel Architecture Processors"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) # To find it, surf to http://www.intel.com/p/en_US/embedded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) # and search for that title.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) ########################################################################
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #include <linux/linkage.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) .text
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) # Virtual Registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) # ARG1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) digest = %rdi
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) # ARG2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) msg = %rsi
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) # ARG3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) msglen = %rdx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) T1 = %rcx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) T2 = %r8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) a_64 = %r9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) b_64 = %r10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) c_64 = %r11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) d_64 = %r12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) e_64 = %r13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) f_64 = %r14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) g_64 = %r15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) h_64 = %rbx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) tmp0 = %rax
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) # Local variables (stack frame)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) # Message Schedule
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) W_SIZE = 80*8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) # W[t] + K[t] | W[t+1] + K[t+1]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) WK_SIZE = 2*8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) RSPSAVE_SIZE = 1*8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) GPRSAVE_SIZE = 5*8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) frame_W = 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) frame_WK = frame_W + W_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) frame_RSPSAVE = frame_WK + WK_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) frame_size = frame_GPRSAVE + GPRSAVE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) # Useful QWORD "arrays" for simpler memory references
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) # MSG, DIGEST, K_t, W_t are arrays
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) # Input message (arg1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) #define MSG(i) 8*i(msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) # Output Digest (arg2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #define DIGEST(i) 8*i(digest)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) # SHA Constants (static mem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) #define K_t(i) 8*i+K512(%rip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) # Message Schedule (stack frame)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define W_t(i) 8*i+frame_W(%rsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) # W[t]+K[t] (stack frame)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) #define WK_2(i) 8*((i%2))+frame_WK(%rsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) .macro RotateState
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) # Rotate symbols a..h right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) TMP = h_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) h_64 = g_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) g_64 = f_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) f_64 = e_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) e_64 = d_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) d_64 = c_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) c_64 = b_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) b_64 = a_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) a_64 = TMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) .endm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) .macro RORQ p1 p2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) # shld is faster than ror on Sandybridge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) shld $(64-\p2), \p1, \p1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) .endm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) .macro SHA512_Round rnd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) # Compute Round %%t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) mov f_64, T1 # T1 = f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) mov e_64, tmp0 # tmp = e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) xor g_64, T1 # T1 = f ^ g
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) RORQ tmp0, 23 # 41 # tmp = e ror 23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) and e_64, T1 # T1 = (f ^ g) & e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) xor e_64, tmp0 # tmp = (e ror 23) ^ e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) idx = \rnd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) add WK_2(idx), T1 # W[t] + K[t] from message scheduler
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) RORQ tmp0, 4 # 18 # tmp = ((e ror 23) ^ e) ror 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) mov a_64, T2 # T2 = a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) RORQ tmp0, 14 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) mov a_64, tmp0 # tmp = a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) xor c_64, T2 # T2 = a ^ c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) and c_64, tmp0 # tmp = a & c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) and b_64, T2 # T2 = (a ^ c) & b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) mov a_64, tmp0 # tmp = a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) RORQ tmp0, 5 # 39 # tmp = a ror 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) xor a_64, tmp0 # tmp = (a ror 5) ^ a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) add T1, d_64 # e(next_state) = d + T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) RORQ tmp0, 6 # 34 # tmp = ((a ror 5) ^ a) ror 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) RORQ tmp0, 28 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) RotateState
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) .endm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) .macro SHA512_2Sched_2Round_avx rnd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) # Compute rounds t-2 and t-1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) # Compute message schedule QWORDS t and t+1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) # Two rounds are computed based on the values for K[t-2]+W[t-2] and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) # scheduler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) # The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) # They are then added to their respective SHA512 constants at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) # [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) # For brievity, the comments following vectored instructions only refer to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) # the first of a pair of QWORDS.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) # Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) # The computation of the message schedule and the rounds are tightly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) # stitched to take advantage of instruction-level parallelism.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) idx = \rnd - 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) vmovdqa W_t(idx), %xmm4 # XMM4 = W[t-2]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) idx = \rnd - 15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) vmovdqu W_t(idx), %xmm5 # XMM5 = W[t-15]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) mov f_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) vpsrlq $61, %xmm4, %xmm0 # XMM0 = W[t-2]>>61
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) mov e_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) vpsrlq $1, %xmm5, %xmm6 # XMM6 = W[t-15]>>1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) xor g_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) RORQ tmp0, 23 # 41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) vpsrlq $19, %xmm4, %xmm1 # XMM1 = W[t-2]>>19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) and e_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) xor e_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) vpxor %xmm1, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) xor g_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) idx = \rnd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) add WK_2(idx), T1#
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) vpsrlq $8, %xmm5, %xmm7 # XMM7 = W[t-15]>>8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) RORQ tmp0, 4 # 18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) vpsrlq $6, %xmm4, %xmm2 # XMM2 = W[t-2]>>6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) xor e_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) mov a_64, T2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) add h_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) vpxor %xmm7, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) RORQ tmp0, 14 # 14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) add tmp0, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) vpsrlq $7, %xmm5, %xmm8 # XMM8 = W[t-15]>>7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) mov a_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) xor c_64, T2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) vpsllq $(64-61), %xmm4, %xmm3 # XMM3 = W[t-2]<<3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) and c_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) and b_64, T2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) vpxor %xmm3, %xmm2, %xmm2 # XMM2 = W[t-2]>>6 ^ W[t-2]<<3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) xor tmp0, T2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) mov a_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) vpsllq $(64-1), %xmm5, %xmm9 # XMM9 = W[t-15]<<63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) RORQ tmp0, 5 # 39
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) vpxor %xmm9, %xmm8, %xmm8 # XMM8 = W[t-15]>>7 ^ W[t-15]<<63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) xor a_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) add T1, d_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) RORQ tmp0, 6 # 34
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) xor a_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) vpxor %xmm8, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) # W[t-15]>>7 ^ W[t-15]<<63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) lea (T1, T2), h_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) RORQ tmp0, 28 # 28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) vpsllq $(64-19), %xmm4, %xmm4 # XMM4 = W[t-2]<<25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) add tmp0, h_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) RotateState
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) vpxor %xmm4, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) # W[t-2]<<25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) mov f_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) vpxor %xmm2, %xmm0, %xmm0 # XMM0 = s1(W[t-2])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) mov e_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) xor g_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) idx = \rnd - 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) vpaddq W_t(idx), %xmm0, %xmm0 # XMM0 = s1(W[t-2]) + W[t-16]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) idx = \rnd - 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) vmovdqu W_t(idx), %xmm1 # XMM1 = W[t-7]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) RORQ tmp0, 23 # 41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) and e_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) xor e_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) xor g_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) vpsllq $(64-8), %xmm5, %xmm5 # XMM5 = W[t-15]<<56
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) idx = \rnd + 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) add WK_2(idx), T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) vpxor %xmm5, %xmm6, %xmm6 # XMM6 = s0(W[t-15])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) RORQ tmp0, 4 # 18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) vpaddq %xmm6, %xmm0, %xmm0 # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) xor e_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) vpaddq %xmm1, %xmm0, %xmm0 # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) # s0(W[t-15]) + W[t-16]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) mov a_64, T2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) add h_64, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) RORQ tmp0, 14 # 14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) add tmp0, T1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) idx = \rnd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) vmovdqa %xmm0, W_t(idx) # Store W[t]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) vpaddq K_t(idx), %xmm0, %xmm0 # Compute W[t]+K[t]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) vmovdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) mov a_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) xor c_64, T2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) and c_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) and b_64, T2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) xor tmp0, T2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) mov a_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) RORQ tmp0, 5 # 39
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) xor a_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) add T1, d_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) RORQ tmp0, 6 # 34
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) xor a_64, tmp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) lea (T1, T2), h_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) RORQ tmp0, 28 # 28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) add tmp0, h_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) RotateState
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) .endm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) ########################################################################
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) # void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) # Purpose: Updates the SHA512 digest stored at "state" with the message
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) # stored in "data".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) # The size of the message pointed to by "data" must be an integer multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) # of SHA512 message blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) # "blocks" is the message length in SHA512 blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) ########################################################################
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) SYM_FUNC_START(sha512_transform_avx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) cmp $0, msglen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) je nowork
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) # Allocate Stack Space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) mov %rsp, %rax
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) sub $frame_size, %rsp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) and $~(0x20 - 1), %rsp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) mov %rax, frame_RSPSAVE(%rsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) # Save GPRs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) mov %rbx, frame_GPRSAVE(%rsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) mov %r12, frame_GPRSAVE +8*1(%rsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) mov %r13, frame_GPRSAVE +8*2(%rsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) mov %r14, frame_GPRSAVE +8*3(%rsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) mov %r15, frame_GPRSAVE +8*4(%rsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) updateblock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) # Load state variables
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) mov DIGEST(0), a_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) mov DIGEST(1), b_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) mov DIGEST(2), c_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) mov DIGEST(3), d_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) mov DIGEST(4), e_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) mov DIGEST(5), f_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) mov DIGEST(6), g_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) mov DIGEST(7), h_64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) t = 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) .rept 80/2 + 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) # (80 rounds) / (2 rounds/iteration) + (1 iteration)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) # +1 iteration because the scheduler leads hashing by 1 iteration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) .if t < 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) # BSWAP 2 QWORDS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) vmovdqa XMM_QWORD_BSWAP(%rip), %xmm1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) vmovdqu MSG(t), %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) vpshufb %xmm1, %xmm0, %xmm0 # BSWAP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) vmovdqa %xmm0, W_t(t) # Store Scheduled Pair
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) vpaddq K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) vmovdqa %xmm0, WK_2(t) # Store into WK for rounds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) .elseif t < 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) # BSWAP 2 QWORDS# Compute 2 Rounds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) vmovdqu MSG(t), %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) vpshufb %xmm1, %xmm0, %xmm0 # BSWAP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) SHA512_Round t-2 # Round t-2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) vmovdqa %xmm0, W_t(t) # Store Scheduled Pair
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) vpaddq K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) SHA512_Round t-1 # Round t-1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) vmovdqa %xmm0, WK_2(t)# Store W[t]+K[t] into WK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) .elseif t < 79
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) # Schedule 2 QWORDS# Compute 2 Rounds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) SHA512_2Sched_2Round_avx t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) .else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) # Compute 2 Rounds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) SHA512_Round t-2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) SHA512_Round t-1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) .endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) t = t+2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) .endr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) # Update digest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) add a_64, DIGEST(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) add b_64, DIGEST(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) add c_64, DIGEST(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) add d_64, DIGEST(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) add e_64, DIGEST(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) add f_64, DIGEST(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) add g_64, DIGEST(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) add h_64, DIGEST(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) # Advance to next message block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) add $16*8, msg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) dec msglen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) jnz updateblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) # Restore GPRs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) mov frame_GPRSAVE(%rsp), %rbx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) mov frame_GPRSAVE +8*1(%rsp), %r12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) mov frame_GPRSAVE +8*2(%rsp), %r13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) mov frame_GPRSAVE +8*3(%rsp), %r14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) mov frame_GPRSAVE +8*4(%rsp), %r15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) # Restore Stack Pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) mov frame_RSPSAVE(%rsp), %rsp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) nowork:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) ret
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) SYM_FUNC_END(sha512_transform_avx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) ########################################################################
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) ### Binary Data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) .section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) .align 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) XMM_QWORD_BSWAP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) .octa 0x08090a0b0c0d0e0f0001020304050607
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) # Mergeable 640-byte rodata section. This allows linker to merge the table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) # with other, exactly the same 640-byte fragment of another rodata section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) # (if such section exists).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) .section .rodata.cst640.K512, "aM", @progbits, 640
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) .align 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) # K[t] used in SHA512 hashing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) K512:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) .quad 0x428a2f98d728ae22,0x7137449123ef65cd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) .quad 0x3956c25bf348b538,0x59f111f1b605d019
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) .quad 0xd807aa98a3030242,0x12835b0145706fbe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) .quad 0x9bdc06a725c71235,0xc19bf174cf692694
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) .quad 0x983e5152ee66dfab,0xa831c66d2db43210
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) .quad 0x06ca6351e003826f,0x142929670a0e6e70
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) .quad 0x81c2c92e47edaee6,0x92722c851482353b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) .quad 0xd192e819d6ef5218,0xd69906245565a910
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) .quad 0xf40e35855771202a,0x106aa07032bbd1b8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) .quad 0x90befffa23631e28,0xa4506cebde82bde9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) .quad 0xca273eceea26619c,0xd186b8c721c0c207
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) .quad 0x113f9804bef90dae,0x1b710b35131c471b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) .quad 0x28db77f523047d84,0x32caab7b40c72493
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817