^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) ########################################################################
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) # Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) # Copyright (c) 2013, Intel Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) # Authors:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) # Erdinc Ozturk <erdinc.ozturk@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) # Vinodh Gopal <vinodh.gopal@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) # James Guilford <james.guilford@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) # Tim Chen <tim.c.chen@linux.intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) # This software is available to you under a choice of one of two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) # licenses. You may choose to be licensed under the terms of the GNU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) # General Public License (GPL) Version 2, available from the file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) # COPYING in the main directory of this source tree, or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) # OpenIB.org BSD license below:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) # Redistribution and use in source and binary forms, with or without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) # modification, are permitted provided that the following conditions are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) # met:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) # * Redistributions of source code must retain the above copyright
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) # notice, this list of conditions and the following disclaimer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) # * Redistributions in binary form must reproduce the above copyright
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) # notice, this list of conditions and the following disclaimer in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) # documentation and/or other materials provided with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) # distribution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) # * Neither the name of the Intel Corporation nor the names of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) # contributors may be used to endorse or promote products derived from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) # this software without specific prior written permission.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) # Reference paper titled "Fast CRC Computation for Generic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) # Polynomials Using PCLMULQDQ Instruction"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) # URL: http://www.intel.com/content/dam/www/public/us/en/documents
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) # /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #include <linux/linkage.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) .text
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #define init_crc %edi
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #define buf %rsi
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #define len %rdx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #define FOLD_CONSTS %xmm10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #define BSWAP_MASK %xmm11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) # Fold reg1, reg2 into the next 32 data bytes, storing the result back into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) # reg1, reg2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) .macro fold_32_bytes offset, reg1, reg2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) movdqu \offset(buf), %xmm9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) movdqu \offset+16(buf), %xmm12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) pshufb BSWAP_MASK, %xmm9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) pshufb BSWAP_MASK, %xmm12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) movdqa \reg1, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) movdqa \reg2, %xmm13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) pclmulqdq $0x00, FOLD_CONSTS, \reg1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) pclmulqdq $0x11, FOLD_CONSTS, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) pclmulqdq $0x00, FOLD_CONSTS, \reg2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) pclmulqdq $0x11, FOLD_CONSTS, %xmm13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) pxor %xmm9 , \reg1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) xorps %xmm8 , \reg1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) pxor %xmm12, \reg2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) xorps %xmm13, \reg2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) .endm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) # Fold src_reg into dst_reg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) .macro fold_16_bytes src_reg, dst_reg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) movdqa \src_reg, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) pclmulqdq $0x11, FOLD_CONSTS, \src_reg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) pclmulqdq $0x00, FOLD_CONSTS, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) pxor %xmm8, \dst_reg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) xorps \src_reg, \dst_reg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) .endm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) # u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) # Assumes len >= 16.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) .align 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) SYM_FUNC_START(crc_t10dif_pcl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) movdqa .Lbswap_mask(%rip), BSWAP_MASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) # For sizes less than 256 bytes, we can't fold 128 bytes at a time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) cmp $256, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) jl .Lless_than_256_bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) # Load the first 128 data bytes. Byte swapping is necessary to make the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) # bit order match the polynomial coefficient order.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) movdqu 16*0(buf), %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) movdqu 16*1(buf), %xmm1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) movdqu 16*2(buf), %xmm2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) movdqu 16*3(buf), %xmm3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) movdqu 16*4(buf), %xmm4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) movdqu 16*5(buf), %xmm5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) movdqu 16*6(buf), %xmm6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) movdqu 16*7(buf), %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) add $128, buf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) pshufb BSWAP_MASK, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) pshufb BSWAP_MASK, %xmm1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) pshufb BSWAP_MASK, %xmm2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) pshufb BSWAP_MASK, %xmm3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) pshufb BSWAP_MASK, %xmm4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) pshufb BSWAP_MASK, %xmm5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) pshufb BSWAP_MASK, %xmm6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) pshufb BSWAP_MASK, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) # XOR the first 16 data *bits* with the initial CRC value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) pxor %xmm8, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) pinsrw $7, init_crc, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) pxor %xmm8, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) # Subtract 128 for the 128 data bytes just consumed. Subtract another
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) # 128 to simplify the termination condition of the following loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) sub $256, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) # While >= 128 data bytes remain (not counting xmm0-7), fold the 128
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) # bytes xmm0-7 into them, storing the result back into xmm0-7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) .Lfold_128_bytes_loop:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) fold_32_bytes 0, %xmm0, %xmm1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) fold_32_bytes 32, %xmm2, %xmm3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) fold_32_bytes 64, %xmm4, %xmm5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) fold_32_bytes 96, %xmm6, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) add $128, buf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) sub $128, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) jge .Lfold_128_bytes_loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) # Fold across 64 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) fold_16_bytes %xmm0, %xmm4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) fold_16_bytes %xmm1, %xmm5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) fold_16_bytes %xmm2, %xmm6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) fold_16_bytes %xmm3, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) # Fold across 32 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) fold_16_bytes %xmm4, %xmm6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) fold_16_bytes %xmm5, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) # Fold across 16 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) fold_16_bytes %xmm6, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) # Add 128 to get the correct number of data bytes remaining in 0...127
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) # (not counting xmm7), following the previous extra subtraction by 128.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) # Then subtract 16 to simplify the termination condition of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) # following loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) add $128-16, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) # xmm7 into them, storing the result back into xmm7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) jl .Lfold_16_bytes_loop_done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) .Lfold_16_bytes_loop:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) movdqa %xmm7, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) pclmulqdq $0x11, FOLD_CONSTS, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) pclmulqdq $0x00, FOLD_CONSTS, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) pxor %xmm8, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) movdqu (buf), %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) pshufb BSWAP_MASK, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) pxor %xmm0 , %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) add $16, buf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) sub $16, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) jge .Lfold_16_bytes_loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) .Lfold_16_bytes_loop_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) # Add 16 to get the correct number of data bytes remaining in 0...15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) # (not counting xmm7), following the previous extra subtraction by 16.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) add $16, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) je .Lreduce_final_16_bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) .Lhandle_partial_segment:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) # bytes are in xmm7 and the rest are the remaining data in 'buf'. To do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) # this without needing a fold constant for each possible 'len', redivide
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) # the bytes into a first chunk of 'len' bytes and a second chunk of 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) # bytes, then fold the first chunk into the second.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) movdqa %xmm7, %xmm2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) # xmm1 = last 16 original data bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) movdqu -16(buf, len), %xmm1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) pshufb BSWAP_MASK, %xmm1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) lea .Lbyteshift_table+16(%rip), %rax
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) sub len, %rax
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) movdqu (%rax), %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) pshufb %xmm0, %xmm2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) pxor .Lmask1(%rip), %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) pshufb %xmm0, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) # then '16-len' bytes from xmm2 (high-order bytes).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) pblendvb %xmm2, %xmm1 #xmm0 is implicit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) # Fold the first chunk into the second chunk, storing the result in xmm7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) movdqa %xmm7, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) pclmulqdq $0x11, FOLD_CONSTS, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) pclmulqdq $0x00, FOLD_CONSTS, %xmm8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) pxor %xmm8, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) pxor %xmm1, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) .Lreduce_final_16_bytes:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) # Fold the high 64 bits into the low 64 bits, while also multiplying by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) # x^64. This produces a 128-bit value congruent to x^64 * M(x) and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) # whose low 48 bits are 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) movdqa %xmm7, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) pslldq $8, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) pxor %xmm0, %xmm7 # + low bits * x^64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) # Fold the high 32 bits into the low 96 bits. This produces a 96-bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) # value congruent to x^64 * M(x) and whose low 48 bits are 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) movdqa %xmm7, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) pand .Lmask2(%rip), %xmm0 # zero high 32 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) psrldq $12, %xmm7 # extract high 32 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) pxor %xmm0, %xmm7 # + low bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) # Load G(x) and floor(x^48 / G(x)).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) # Use Barrett reduction to compute the final CRC value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) movdqa %xmm7, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) psrlq $32, %xmm7 # /= x^32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) psrlq $48, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) pxor %xmm7, %xmm0 # + low 16 nonzero bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) pextrw $0, %xmm0, %eax
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) ret
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) .align 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) .Lless_than_256_bytes:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) # Checksumming a buffer of length 16...255 bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) # Load the first 16 data bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) movdqu (buf), %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) pshufb BSWAP_MASK, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) add $16, buf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) # XOR the first 16 data *bits* with the initial CRC value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) pxor %xmm0, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) pinsrw $7, init_crc, %xmm0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) pxor %xmm0, %xmm7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) cmp $16, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) je .Lreduce_final_16_bytes # len == 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) sub $32, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) jge .Lfold_16_bytes_loop # 32 <= len <= 255
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) add $16, len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) jmp .Lhandle_partial_segment # 17 <= len <= 31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) SYM_FUNC_END(crc_t10dif_pcl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) .section .rodata, "a", @progbits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) .align 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) # Fold constants precomputed from the polynomial 0x18bb7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) # G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) .Lfold_across_128_bytes_consts:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) .quad 0x0000000000006123 # x^(8*128) mod G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) .quad 0x0000000000002295 # x^(8*128+64) mod G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) .Lfold_across_64_bytes_consts:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) .quad 0x0000000000001069 # x^(4*128) mod G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) .quad 0x000000000000dd31 # x^(4*128+64) mod G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) .Lfold_across_32_bytes_consts:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) .quad 0x000000000000857d # x^(2*128) mod G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) .quad 0x0000000000007acc # x^(2*128+64) mod G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) .Lfold_across_16_bytes_consts:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) .quad 0x000000000000a010 # x^(1*128) mod G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) .quad 0x0000000000001faa # x^(1*128+64) mod G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) .Lfinal_fold_consts:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) .quad 0x1368000000000000 # x^48 * (x^48 mod G(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) .Lbarrett_reduction_consts:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) .quad 0x0000000000018bb7 # G(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) .quad 0x00000001f65a57f8 # floor(x^48 / G(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) .section .rodata.cst16.mask1, "aM", @progbits, 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) .align 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) .Lmask1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) .octa 0x80808080808080808080808080808080
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) .section .rodata.cst16.mask2, "aM", @progbits, 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) .align 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) .Lmask2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) .section .rodata.cst16.bswap_mask, "aM", @progbits, 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) .align 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) .Lbswap_mask:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) .octa 0x000102030405060708090A0B0C0D0E0F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) .section .rodata.cst32.byteshift_table, "aM", @progbits, 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) .align 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) # For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) # is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) # 0x80} XOR the index vector to shift right by '16 - len' bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) .Lbyteshift_table:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0