Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Copyright 2003 PathScale, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Derived from include/asm-i386/pgtable.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #ifndef __UM_PGTABLE_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #define __UM_PGTABLE_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <asm/fixmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #define _PAGE_PRESENT	0x001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #define _PAGE_NEWPAGE	0x002
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #define _PAGE_NEWPROT	0x004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #define _PAGE_RW	0x020
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #define _PAGE_USER	0x040
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #define _PAGE_ACCESSED	0x080
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #define _PAGE_DIRTY	0x100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) /* If _PAGE_PRESENT is clear, we use these: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 				   pte_present gives true */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #ifdef CONFIG_3_LEVEL_PGTABLES
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <asm/pgtable-3level.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <asm/pgtable-2level.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) /* zero page used for uninitialized stuff */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) extern unsigned long *empty_zero_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) /* Just any arbitrary offset to the start of the vmalloc VM area: the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * current 8MB value just means that there will be a 8MB "hole" after the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * physical memory until the kernel virtual memory starts.  That means that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  * any out-of-bounds memory accesses will hopefully be caught.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * area for the same reason. ;)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) extern unsigned long end_iomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define VMALLOC_OFFSET	(__va_space)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define MODULES_VADDR	VMALLOC_START
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define MODULES_END	VMALLOC_END
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define MODULES_LEN	(MODULES_VADDR - MODULES_END)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define __PAGE_KERNEL_EXEC                                              \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  * The i386 can't do page protection for execute, and considers that the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * are read.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * Also, write permissions imply read permissions. This is the closest we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  * get..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define __P000	PAGE_NONE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define __P001	PAGE_READONLY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define __P010	PAGE_COPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #define __P011	PAGE_COPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define __P100	PAGE_READONLY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define __P101	PAGE_READONLY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define __P110	PAGE_COPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) #define __P111	PAGE_COPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define __S000	PAGE_NONE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define __S001	PAGE_READONLY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #define __S010	PAGE_SHARED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) #define __S011	PAGE_SHARED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) #define __S100	PAGE_READONLY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) #define __S101	PAGE_READONLY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) #define __S110	PAGE_SHARED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) #define __S111	PAGE_SHARED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  * ZERO_PAGE is a global shared page that is always zero: used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  * for zero-mapped memory areas etc..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) #define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) #define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define p4d_newpage(x)  (p4d_val(x) & _PAGE_NEWPAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) #define pte_page(x) pfn_to_page(pte_pfn(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) #define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)  * =================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)  * Flags checking section.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  * =================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) static inline int pte_none(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	return pte_is_zero(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)  * The following only work if pte_present() is true.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)  * Undefined behaviour if not..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) static inline int pte_read(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	return((pte_get_bits(pte, _PAGE_USER)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) static inline int pte_exec(pte_t pte){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	return((pte_get_bits(pte, _PAGE_USER)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) static inline int pte_write(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	return((pte_get_bits(pte, _PAGE_RW)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) static inline int pte_dirty(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	return pte_get_bits(pte, _PAGE_DIRTY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) static inline int pte_young(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	return pte_get_bits(pte, _PAGE_ACCESSED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static inline int pte_newpage(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	return pte_get_bits(pte, _PAGE_NEWPAGE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) static inline int pte_newprot(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)  * =================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)  * Flags setting section.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)  * =================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) static inline pte_t pte_mknewprot(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	pte_set_bits(pte, _PAGE_NEWPROT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	return(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) static inline pte_t pte_mkclean(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	pte_clear_bits(pte, _PAGE_DIRTY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	return(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) static inline pte_t pte_mkold(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	pte_clear_bits(pte, _PAGE_ACCESSED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	return(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) static inline pte_t pte_wrprotect(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	if (likely(pte_get_bits(pte, _PAGE_RW)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		pte_clear_bits(pte, _PAGE_RW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	return(pte_mknewprot(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) static inline pte_t pte_mkread(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	if (unlikely(pte_get_bits(pte, _PAGE_USER)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 		return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	pte_set_bits(pte, _PAGE_USER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	return(pte_mknewprot(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) static inline pte_t pte_mkdirty(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	pte_set_bits(pte, _PAGE_DIRTY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	return(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) static inline pte_t pte_mkyoung(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	pte_set_bits(pte, _PAGE_ACCESSED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	return(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) static inline pte_t pte_mkwrite(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	if (unlikely(pte_get_bits(pte,  _PAGE_RW)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 		return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	pte_set_bits(pte, _PAGE_RW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	return(pte_mknewprot(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) static inline pte_t pte_mkuptodate(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	pte_clear_bits(pte, _PAGE_NEWPAGE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	if(pte_present(pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 		pte_clear_bits(pte, _PAGE_NEWPROT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	return(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) static inline pte_t pte_mknewpage(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	pte_set_bits(pte, _PAGE_NEWPAGE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	return(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) static inline void set_pte(pte_t *pteptr, pte_t pteval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	pte_copy(*pteptr, pteval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	 * mapped pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	*pteptr = pte_mknewpage(*pteptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 			      pte_t *pteptr, pte_t pteval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	set_pte(pteptr, pteval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) #define __HAVE_ARCH_PTE_SAME
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) static inline int pte_same(pte_t pte_a, pte_t pte_b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)  * Conversion functions: convert a page and protection to a page entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)  * and a page entry and page directory to the page they refer to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) #define __virt_to_page(virt) phys_to_page(__pa(virt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) #define mk_pte(page, pgprot) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	({ pte_t pte;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	pte_set_val(pte, page_to_phys(page), (pgprot));	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	if (pte_present(pte))				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		pte_mknewprot(pte_mknewpage(pte));	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	pte;})
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)  * this macro returns the index of the entry in the pmd page which would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)  * control the given virtual address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) struct mm_struct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) #define update_mmu_cache(vma,address,ptep) do ; while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) /* Encode and de-code a swap entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) #define __swp_type(x)			(((x).val >> 5) & 0x1f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) #define __swp_offset(x)			((x).val >> 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) #define __swp_entry(type, offset) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) #define __pte_to_swp_entry(pte) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) #define kern_addr_valid(addr) (1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) /* Clear a kernel PTE and flush it from the TLB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) #define kpte_clear_flush(ptep, vaddr)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) do {						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	pte_clear(&init_mm, (vaddr), (ptep));	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	__flush_tlb_one((vaddr));		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) #endif