Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /* visemul.c: Emulation of VIS instructions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Copyright (C) 2006 David S. Miller (davem@davemloft.net)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/thread_info.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/perf_event.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <asm/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <asm/pstate.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <asm/fpumacro.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) /* OPF field of various VIS instructions.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) /* 000111011 - four 16-bit packs  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define FPACK16_OPF	0x03b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) /* 000111010 - two 32-bit packs  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #define FPACK32_OPF	0x03a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) /* 000111101 - four 16-bit packs  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define FPACKFIX_OPF	0x03d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) /* 001001101 - four 16-bit expands  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define FEXPAND_OPF	0x04d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) /* 001001011 - two 32-bit merges */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define FPMERGE_OPF	0x04b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) /* 000110001 - 8-by-16-bit partitioned product  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define FMUL8x16_OPF	0x031
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) /* 000110011 - 8-by-16-bit upper alpha partitioned product  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define FMUL8x16AU_OPF	0x033
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) /* 000110101 - 8-by-16-bit lower alpha partitioned product  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define FMUL8x16AL_OPF	0x035
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) /* 000110110 - upper 8-by-16-bit partitioned product  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define FMUL8SUx16_OPF	0x036
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) /* 000110111 - lower 8-by-16-bit partitioned product  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define FMUL8ULx16_OPF	0x037
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) /* 000111000 - upper 8-by-16-bit partitioned product  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define FMULD8SUx16_OPF	0x038
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) /* 000111001 - lower unsigned 8-by-16-bit partitioned product  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define FMULD8ULx16_OPF	0x039
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) /* 000101000 - four 16-bit compare; set rd if src1 > src2  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define FCMPGT16_OPF	0x028
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) /* 000101100 - two 32-bit compare; set rd if src1 > src2  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define FCMPGT32_OPF	0x02c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) /* 000100000 - four 16-bit compare; set rd if src1 <= src2  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define FCMPLE16_OPF	0x020
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) /* 000100100 - two 32-bit compare; set rd if src1 <= src2  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define FCMPLE32_OPF	0x024
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) /* 000100010 - four 16-bit compare; set rd if src1 != src2  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define FCMPNE16_OPF	0x022
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) /* 000100110 - two 32-bit compare; set rd if src1 != src2  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define FCMPNE32_OPF	0x026
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) /* 000101010 - four 16-bit compare; set rd if src1 == src2  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #define FCMPEQ16_OPF	0x02a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) /* 000101110 - two 32-bit compare; set rd if src1 == src2  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define FCMPEQ32_OPF	0x02e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) /* 000000000 - Eight 8-bit edge boundary processing  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define EDGE8_OPF	0x000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) /* 000000001 - Eight 8-bit edge boundary processing, no CC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) #define EDGE8N_OPF	0x001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) /* 000000010 - Eight 8-bit edge boundary processing, little-endian  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) #define EDGE8L_OPF	0x002
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) /* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) #define EDGE8LN_OPF	0x003
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) /* 000000100 - Four 16-bit edge boundary processing  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) #define EDGE16_OPF	0x004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) /* 000000101 - Four 16-bit edge boundary processing, no CC  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) #define EDGE16N_OPF	0x005
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) /* 000000110 - Four 16-bit edge boundary processing, little-endian  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) #define EDGE16L_OPF	0x006
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) /* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define EDGE16LN_OPF	0x007
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) /* 000001000 - Two 32-bit edge boundary processing  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) #define EDGE32_OPF	0x008
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) /* 000001001 - Two 32-bit edge boundary processing, no CC  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define EDGE32N_OPF	0x009
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) /* 000001010 - Two 32-bit edge boundary processing, little-endian  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define EDGE32L_OPF	0x00a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) /* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define EDGE32LN_OPF	0x00b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) /* 000111110 - distance between 8 8-bit components  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) #define PDIST_OPF	0x03e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /* 000010000 - convert 8-bit 3-D address to blocked byte address  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #define ARRAY8_OPF	0x010
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) /* 000010010 - convert 16-bit 3-D address to blocked byte address  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) #define ARRAY16_OPF	0x012
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) /* 000010100 - convert 32-bit 3-D address to blocked byte address  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) #define ARRAY32_OPF	0x014
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) /* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #define BMASK_OPF	0x019
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) /* 001001100 - Permute bytes as specified by GSR.MASK  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #define BSHUFFLE_OPF	0x04c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #define VIS_OPF_SHIFT	5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define VIS_OPF_MASK	(0x1ff << VIS_OPF_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) #define RS1(INSN)	(((INSN) >> 14) & 0x1f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) #define RS2(INSN)	(((INSN) >>  0) & 0x1f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) #define RD(INSN)	(((INSN) >> 25) & 0x1f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 				       unsigned int rd, int from_kernel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		if (from_kernel != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 			__asm__ __volatile__("flushw");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 			flushw_user();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	unsigned long value, fp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	if (reg < 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		return (!reg ? 0 : regs->u_regs[reg]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	fp = regs->u_regs[UREG_FP];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	if (regs->tstate & TSTATE_PRIV) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 		struct reg_window *win;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		win = (struct reg_window *)(fp + STACK_BIAS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		value = win->locals[reg - 16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	} else if (!test_thread_64bit_stack(fp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		struct reg_window32 __user *win32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 		get_user(value, &win32->locals[reg - 16]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		struct reg_window __user *win;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		win = (struct reg_window __user *)(fp + STACK_BIAS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		get_user(value, &win->locals[reg - 16]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	return value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 							  struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	unsigned long fp = regs->u_regs[UREG_FP];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	BUG_ON(reg < 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	BUG_ON(regs->tstate & TSTATE_PRIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	if (!test_thread_64bit_stack(fp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		struct reg_window32 __user *win32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		return (unsigned long __user *)&win32->locals[reg - 16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		struct reg_window __user *win;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		win = (struct reg_window __user *)(fp + STACK_BIAS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		return &win->locals[reg - 16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 						   struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	BUG_ON(reg >= 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	BUG_ON(regs->tstate & TSTATE_PRIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	return &regs->u_regs[reg];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	if (rd < 16) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		*rd_kern = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		if (!test_thread_64bit_stack(regs->u_regs[UREG_FP]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 			__put_user((u32)val, (u32 __user *)rd_user);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 			__put_user(val, rd_user);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) static inline unsigned long fpd_regval(struct fpustate *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 				       unsigned int insn_regnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	insn_regnum = (((insn_regnum & 1) << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		       (insn_regnum & 0x1e));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	return *(unsigned long *) &f->regs[insn_regnum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) static inline unsigned long *fpd_regaddr(struct fpustate *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 					 unsigned int insn_regnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	insn_regnum = (((insn_regnum & 1) << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		       (insn_regnum & 0x1e));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	return (unsigned long *) &f->regs[insn_regnum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) static inline unsigned int fps_regval(struct fpustate *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 				      unsigned int insn_regnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	return f->regs[insn_regnum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) static inline unsigned int *fps_regaddr(struct fpustate *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 					unsigned int insn_regnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	return &f->regs[insn_regnum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) struct edge_tab {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	u16 left, right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) static struct edge_tab edge8_tab[8] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	{ 0xff, 0x80 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	{ 0x7f, 0xc0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	{ 0x3f, 0xe0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	{ 0x1f, 0xf0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	{ 0x0f, 0xf8 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	{ 0x07, 0xfc },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	{ 0x03, 0xfe },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	{ 0x01, 0xff },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) static struct edge_tab edge8_tab_l[8] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	{ 0xff, 0x01 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	{ 0xfe, 0x03 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	{ 0xfc, 0x07 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	{ 0xf8, 0x0f },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	{ 0xf0, 0x1f },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	{ 0xe0, 0x3f },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	{ 0xc0, 0x7f },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	{ 0x80, 0xff },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) static struct edge_tab edge16_tab[4] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	{ 0xf, 0x8 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	{ 0x7, 0xc },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	{ 0x3, 0xe },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	{ 0x1, 0xf },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) static struct edge_tab edge16_tab_l[4] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	{ 0xf, 0x1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	{ 0xe, 0x3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	{ 0xc, 0x7 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	{ 0x8, 0xf },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) static struct edge_tab edge32_tab[2] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	{ 0x3, 0x2 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	{ 0x1, 0x3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) static struct edge_tab edge32_tab_l[2] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	{ 0x3, 0x1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	{ 0x2, 0x3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	u16 left, right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	orig_rs1 = rs1 = fetch_reg(RS1(insn), regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	orig_rs2 = rs2 = fetch_reg(RS2(insn), regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	if (test_thread_flag(TIF_32BIT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		rs1 = rs1 & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		rs2 = rs2 & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	switch (opf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	case EDGE8_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	case EDGE8N_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		left = edge8_tab[rs1 & 0x7].left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		right = edge8_tab[rs2 & 0x7].right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	case EDGE8L_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	case EDGE8LN_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 		left = edge8_tab_l[rs1 & 0x7].left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 		right = edge8_tab_l[rs2 & 0x7].right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	case EDGE16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	case EDGE16N_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 		left = edge16_tab[(rs1 >> 1) & 0x3].left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 		right = edge16_tab[(rs2 >> 1) & 0x3].right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	case EDGE16L_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	case EDGE16LN_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		left = edge16_tab_l[(rs1 >> 1) & 0x3].left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		right = edge16_tab_l[(rs2 >> 1) & 0x3].right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	case EDGE32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	case EDGE32N_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		left = edge32_tab[(rs1 >> 2) & 0x1].left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 		right = edge32_tab[(rs2 >> 2) & 0x1].right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	case EDGE32L_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	case EDGE32LN_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 		left = edge32_tab_l[(rs1 >> 2) & 0x1].left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		right = edge32_tab_l[(rs2 >> 2) & 0x1].right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 		rd_val = right & left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 		rd_val = left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	store_reg(regs, rd_val, RD(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	switch (opf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	case EDGE8_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	case EDGE8L_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	case EDGE16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	case EDGE16L_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	case EDGE32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	case EDGE32L_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		unsigned long ccr, tstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 		__asm__ __volatile__("subcc	%1, %2, %%g0\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 				     "rd	%%ccr, %0"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 				     : "=r" (ccr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 				     : "r" (orig_rs1), "r" (orig_rs2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 				     : "cc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 		tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 		regs->tstate = tstate | (ccr << 32UL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	unsigned long rs1, rs2, rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	unsigned int bits, bits_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	rs1 = fetch_reg(RS1(insn), regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	rs2 = fetch_reg(RS2(insn), regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	bits = (rs2 > 5 ? 5 : rs2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	bits_mask = (1UL << bits) - 1UL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	rd_val = ((((rs1 >> 11) & 0x3) <<  0) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 		  (((rs1 >> 33) & 0x3) <<  2) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 		  (((rs1 >> 55) & 0x1) <<  4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 		  (((rs1 >> 13) & 0xf) <<  5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 		  (((rs1 >> 35) & 0xf) <<  9) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		  (((rs1 >> 56) & 0xf) << 13) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 		  (((rs1 >> 17) & bits_mask) << 17) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 		  (((rs1 >> 39) & bits_mask) << (17 + bits)) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 		  (((rs1 >> 60) & 0xf)       << (17 + (2*bits))));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	switch (opf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	case ARRAY16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 		rd_val <<= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	case ARRAY32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		rd_val <<= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	store_reg(regs, rd_val, RD(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) static void bmask(struct pt_regs *regs, unsigned int insn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	unsigned long rs1, rs2, rd_val, gsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	rs1 = fetch_reg(RS1(insn), regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	rs2 = fetch_reg(RS2(insn), regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	rd_val = rs1 + rs2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	store_reg(regs, rd_val, RD(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	gsr = current_thread_info()->gsr[0] & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	gsr |= rd_val << 32UL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	current_thread_info()->gsr[0] = gsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) static void bshuffle(struct pt_regs *regs, unsigned int insn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	struct fpustate *f = FPUSTATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	unsigned long rs1, rs2, rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	unsigned long bmask, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	bmask = current_thread_info()->gsr[0] >> 32UL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	rs1 = fpd_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	rs2 = fpd_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	rd_val = 0UL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	for (i = 0; i < 8; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 		unsigned long which = (bmask >> (i * 4)) & 0xf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		unsigned long byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 		if (which < 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 			byte = (rs1 >> (which * 8)) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 			byte = (rs2 >> ((which-8)*8)) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 		rd_val |= (byte << (i * 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	*fpd_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) static void pdist(struct pt_regs *regs, unsigned int insn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	struct fpustate *f = FPUSTATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	unsigned long rs1, rs2, *rd, rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	unsigned long i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	rs1 = fpd_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	rs2 = fpd_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	rd = fpd_regaddr(f, RD(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	rd_val = *rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	for (i = 0; i < 8; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		s16 s1, s2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		s1 = (rs1 >> (56 - (i * 8))) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 		s2 = (rs2 >> (56 - (i * 8))) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 		/* Absolute value of difference. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 		s1 -= s2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 		if (s1 < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 			s1 = ~s1 + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 		rd_val += s1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	*rd = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	struct fpustate *f = FPUSTATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	unsigned long rs1, rs2, gsr, scale, rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	gsr = current_thread_info()->gsr[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	switch (opf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	case FPACK16_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 		unsigned long byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 		rs2 = fpd_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 		rd_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 		for (byte = 0; byte < 4; byte++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 			unsigned int val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 			s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 			int scaled = src << scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 			int from_fixed = scaled >> 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 			val = ((from_fixed < 0) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 			       0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 			       (from_fixed > 255) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 			       255 : from_fixed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 			rd_val |= (val << (8 * byte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 		*fps_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	case FPACK32_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 		unsigned long word;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 		rs1 = fpd_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 		rs2 = fpd_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 		for (word = 0; word < 2; word++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 			unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 			s32 src = (rs2 >> (word * 32UL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 			s64 scaled = src << scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 			s64 from_fixed = scaled >> 23;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 			val = ((from_fixed < 0) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 			       0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 			       (from_fixed > 255) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 			       255 : from_fixed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 			rd_val |= (val << (32 * word));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 		*fpd_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	case FPACKFIX_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 		unsigned long word;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 		rs2 = fpd_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 		rd_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 		for (word = 0; word < 2; word++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 			long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 			s32 src = (rs2 >> (word * 32UL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 			s64 scaled = src << scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 			s64 from_fixed = scaled >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 			val = ((from_fixed < -32768) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 			       -32768 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 			       (from_fixed > 32767) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 			       32767 : from_fixed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 			rd_val |= ((val & 0xffff) << (word * 16));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 		*fps_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	case FEXPAND_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 		unsigned long byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 		rs2 = fps_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 		rd_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 		for (byte = 0; byte < 4; byte++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 			unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 			u8 src = (rs2 >> (byte * 8)) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 			val = src << 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 			rd_val |= (val << (byte * 16));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 		*fpd_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	case FPMERGE_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		rs1 = fps_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		rs2 = fps_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 		rd_val = (((rs2 & 0x000000ff) <<  0) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 			  ((rs1 & 0x000000ff) <<  8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 			  ((rs2 & 0x0000ff00) <<  8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 			  ((rs1 & 0x0000ff00) << 16) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 			  ((rs2 & 0x00ff0000) << 16) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 			  ((rs1 & 0x00ff0000) << 24) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 			  ((rs2 & 0xff000000) << 24) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 			  ((rs1 & 0xff000000) << 32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 		*fpd_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	struct fpustate *f = FPUSTATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 	unsigned long rs1, rs2, rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	switch (opf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	case FMUL8x16_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 		unsigned long byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 		rs1 = fps_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 		rs2 = fpd_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 		rd_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 		for (byte = 0; byte < 4; byte++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 			u16 src1 = (rs1 >> (byte *  8)) & 0x00ff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 			s16 src2 = (rs2 >> (byte * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 			u32 prod = src1 * src2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 			u16 scaled = ((prod & 0x00ffff00) >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 			/* Round up.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 			if (prod & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 				scaled++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 			rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 		*fpd_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	case FMUL8x16AU_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	case FMUL8x16AL_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 		unsigned long byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 		s16 src2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 		rs1 = fps_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 		rs2 = fps_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 		rd_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 		src2 = rs2 >> (opf == FMUL8x16AU_OPF ? 16 : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 		for (byte = 0; byte < 4; byte++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 			u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 			u32 prod = src1 * src2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 			u16 scaled = ((prod & 0x00ffff00) >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 			/* Round up.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 			if (prod & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 				scaled++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 			rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 		*fpd_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 	case FMUL8SUx16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 	case FMUL8ULx16_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 		unsigned long byte, ushift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 		rs1 = fpd_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 		rs2 = fpd_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 		rd_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 		ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 		for (byte = 0; byte < 4; byte++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 			u16 src1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 			s16 src2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 			u32 prod;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 			u16 scaled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 			src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 			src2 = ((rs2 >> (16 * byte)) & 0xffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 			prod = src1 * src2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 			scaled = ((prod & 0x00ffff00) >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 			/* Round up.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 			if (prod & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 				scaled++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 			rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 		*fpd_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	case FMULD8SUx16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	case FMULD8ULx16_OPF: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 		unsigned long byte, ushift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 		rs1 = fps_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 		rs2 = fps_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 		rd_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 		ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 		for (byte = 0; byte < 2; byte++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 			u16 src1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 			s16 src2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 			u32 prod;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 			u16 scaled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 			src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 			src2 = ((rs2 >> (16 * byte)) & 0xffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 			prod = src1 * src2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 			scaled = ((prod & 0x00ffff00) >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 			/* Round up.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 			if (prod & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 				scaled++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 			rd_val |= ((scaled & 0xffffUL) <<
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 				   ((byte * 32UL) + 7UL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 		*fpd_regaddr(f, RD(insn)) = rd_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	struct fpustate *f = FPUSTATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 	unsigned long rs1, rs2, rd_val, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 	rs1 = fpd_regval(f, RS1(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	rs2 = fpd_regval(f, RS2(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 	rd_val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	switch (opf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	case FCMPGT16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 		for (i = 0; i < 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 			s16 a = (rs1 >> (i * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 			s16 b = (rs2 >> (i * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 			if (a > b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 				rd_val |= 8 >> i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	case FCMPGT32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 		for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 			s32 a = (rs1 >> (i * 32)) & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 			s32 b = (rs2 >> (i * 32)) & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 			if (a > b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 				rd_val |= 2 >> i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 	case FCMPLE16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 		for (i = 0; i < 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 			s16 a = (rs1 >> (i * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 			s16 b = (rs2 >> (i * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 			if (a <= b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 				rd_val |= 8 >> i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 	case FCMPLE32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 		for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 			s32 a = (rs1 >> (i * 32)) & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 			s32 b = (rs2 >> (i * 32)) & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 			if (a <= b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 				rd_val |= 2 >> i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 	case FCMPNE16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 		for (i = 0; i < 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 			s16 a = (rs1 >> (i * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 			s16 b = (rs2 >> (i * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 			if (a != b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 				rd_val |= 8 >> i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 	case FCMPNE32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 		for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 			s32 a = (rs1 >> (i * 32)) & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 			s32 b = (rs2 >> (i * 32)) & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 			if (a != b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 				rd_val |= 2 >> i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 	case FCMPEQ16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 		for (i = 0; i < 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 			s16 a = (rs1 >> (i * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 			s16 b = (rs2 >> (i * 16)) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 			if (a == b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 				rd_val |= 8 >> i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 	case FCMPEQ32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 		for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 			s32 a = (rs1 >> (i * 32)) & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 			s32 b = (rs2 >> (i * 32)) & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 			if (a == b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 				rd_val |= 2 >> i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 	maybe_flush_windows(0, 0, RD(insn), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 	store_reg(regs, rd_val, RD(insn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) /* Emulate the VIS instructions which are not implemented in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802)  * hardware on Niagara.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) int vis_emul(struct pt_regs *regs, unsigned int insn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 	unsigned long pc = regs->tpc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 	unsigned int opf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 	BUG_ON(regs->tstate & TSTATE_PRIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 	if (test_thread_flag(TIF_32BIT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 		pc = (u32)pc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 	if (get_user(insn, (u32 __user *) pc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 	save_and_clear_fpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 	opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 	switch (opf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 	/* Pixel Formatting Instructions.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	case FPACK16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 	case FPACK32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 	case FPACKFIX_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	case FEXPAND_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 	case FPMERGE_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 		pformat(regs, insn, opf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 	/* Partitioned Multiply Instructions  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 	case FMUL8x16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 	case FMUL8x16AU_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 	case FMUL8x16AL_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 	case FMUL8SUx16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 	case FMUL8ULx16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 	case FMULD8SUx16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 	case FMULD8ULx16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 		pmul(regs, insn, opf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 	/* Pixel Compare Instructions  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 	case FCMPGT16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 	case FCMPGT32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 	case FCMPLE16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 	case FCMPLE32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 	case FCMPNE16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 	case FCMPNE32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) 	case FCMPEQ16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 	case FCMPEQ32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 		pcmp(regs, insn, opf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 	/* Edge Handling Instructions  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 	case EDGE8_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 	case EDGE8N_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 	case EDGE8L_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 	case EDGE8LN_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 	case EDGE16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 	case EDGE16N_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 	case EDGE16L_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 	case EDGE16LN_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 	case EDGE32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 	case EDGE32N_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 	case EDGE32L_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) 	case EDGE32LN_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) 		edge(regs, insn, opf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) 	/* Pixel Component Distance  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 	case PDIST_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) 		pdist(regs, insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 	/* Three-Dimensional Array Addressing Instructions  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) 	case ARRAY8_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) 	case ARRAY16_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) 	case ARRAY32_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) 		array(regs, insn, opf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) 	/* Byte Mask and Shuffle Instructions  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) 	case BMASK_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) 		bmask(regs, insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) 	case BSHUFFLE_OPF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) 		bshuffle(regs, insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) 	regs->tpc = regs->tnpc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) 	regs->tnpc += 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) }