Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /* smp.c: Sparc64 SMP support.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) #include <linux/sched/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) #include <linux/sched/hotplug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/pagemap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/threads.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/kernel_stat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/seq_file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/cache.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/profile.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/memblock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/vmalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/ftrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/kgdb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include <asm/head.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <asm/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/atomic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <asm/tlbflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <asm/mmu_context.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <asm/cpudata.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #include <asm/hvtramp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include <asm/timer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include <asm/setup.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #include <asm/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #include <asm/irq_regs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #include <asm/page.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #include <asm/oplib.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #include <asm/starfire.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) #include <asm/tlb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #include <asm/pgalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #include <asm/sections.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #include <asm/prom.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #include <asm/mdesc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) #include <asm/ldc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) #include <asm/hypervisor.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) #include <asm/pcr.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #include "cpumap.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #include "kernel.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) EXPORT_SYMBOL(cpu_core_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) EXPORT_SYMBOL(cpu_core_sib_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) EXPORT_SYMBOL(cpu_core_sib_cache_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) static cpumask_t smp_commenced_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) static DEFINE_PER_CPU(bool, poke);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) static bool cpu_poke;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) void smp_info(struct seq_file *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 	seq_printf(m, "State:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 	for_each_online_cpu(i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 		seq_printf(m, "CPU%d:\t\tonline\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) void smp_bogo(struct seq_file *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 	for_each_online_cpu(i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 		seq_printf(m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 			   "Cpu%dClkTck\t: %016lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 			   i, cpu_data(i).clock_tick);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) extern void setup_sparc64_timer(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) static volatile unsigned long callin_flag = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) void smp_callin(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	int cpuid = hard_smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 	if (tlb_type == hypervisor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 		sun4v_ktsb_register();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	__flush_tlb_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	setup_sparc64_timer();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	if (cheetah_pcache_forced_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 		cheetah_enable_pcache();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 	callin_flag = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 	__asm__ __volatile__("membar #Sync\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 			     "flush  %%g6" : : : "memory");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 	/* Clear this or we will die instantly when we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	 * schedule back to this idler...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 	current_thread_info()->new_child = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	/* Attach to the address space of init_task. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	mmgrab(&init_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	current->active_mm = &init_mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	/* inform the notifiers about the new cpu */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	notify_cpu_starting(cpuid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 		rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	set_cpu_online(cpuid, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) void cpu_panic(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	panic("SMP bolixed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) /* This tick register synchronization scheme is taken entirely from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153)  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155)  * The only change I've made is to rework it so that the master
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156)  * initiates the synchonization instead of the slave. -DaveM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) #define MASTER	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) #define NUM_ROUNDS	64	/* magic value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) #define NUM_ITERS	5	/* likewise */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) static DEFINE_RAW_SPINLOCK(itc_sync_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) static unsigned long go[SLAVE + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) #define DEBUG_TICK_SYNC	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) static inline long get_delta (long *rt, long *master)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 	unsigned long tcenter, t0, t1, tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 	unsigned long i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	for (i = 0; i < NUM_ITERS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 		t0 = tick_ops->get_tick();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 		go[MASTER] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 		membar_safe("#StoreLoad");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 		while (!(tm = go[SLAVE]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 			rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 		go[SLAVE] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 		wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 		t1 = tick_ops->get_tick();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 		if (t1 - t0 < best_t1 - best_t0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 			best_t0 = t0, best_t1 = t1, best_tm = tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	*rt = best_t1 - best_t0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 	*master = best_tm - best_t0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 	/* average best_t0 and best_t1 without overflow: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 	tcenter = (best_t0/2 + best_t1/2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	if (best_t0 % 2 + best_t1 % 2 == 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 		tcenter++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	return tcenter - best_tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) void smp_synchronize_tick_client(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 	long i, delta, adj, adjust_latency = 0, done = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 	unsigned long flags, rt, master_time_stamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) #if DEBUG_TICK_SYNC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 	struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 		long rt;	/* roundtrip time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 		long master;	/* master's timestamp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 		long diff;	/* difference between midpoint and master's timestamp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 		long lat;	/* estimate of itc adjustment latency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	} t[NUM_ROUNDS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 	go[MASTER] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	while (go[MASTER])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 		rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 		for (i = 0; i < NUM_ROUNDS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 			delta = get_delta(&rt, &master_time_stamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 			if (delta == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 				done = 1;	/* let's lock on to this... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 			if (!done) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 				if (i > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 					adjust_latency += -delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 					adj = -delta + adjust_latency/4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 				} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 					adj = -delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 				tick_ops->add_tick(adj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) #if DEBUG_TICK_SYNC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 			t[i].rt = rt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 			t[i].master = master_time_stamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 			t[i].diff = delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 			t[i].lat = adjust_latency/4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) #if DEBUG_TICK_SYNC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	for (i = 0; i < NUM_ROUNDS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	       smp_processor_id(), delta, rt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) static void smp_start_sync_tick_client(int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) static void smp_synchronize_one_tick(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	unsigned long flags, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	go[MASTER] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 	smp_start_sync_tick_client(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	/* wait for client to be ready */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	while (!go[MASTER])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 		rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	/* now let the client proceed into his loop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	go[MASTER] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	membar_safe("#StoreLoad");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	raw_spin_lock_irqsave(&itc_sync_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 			while (!go[MASTER])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 				rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 			go[MASTER] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 			wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 			go[SLAVE] = tick_ops->get_tick();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 			membar_safe("#StoreLoad");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 				void **descrp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	extern unsigned long sparc64_ttable_tl0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	extern unsigned long kern_locked_tte_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 	struct hvtramp_descr *hdesc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 	unsigned long trampoline_ra;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	struct trap_per_cpu *tb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	u64 tte_vaddr, tte_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	unsigned long hv_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	hdesc = kzalloc(sizeof(*hdesc) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 			(sizeof(struct hvtramp_mapping) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 			 num_kernel_image_mappings - 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 			GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	if (!hdesc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 		       "hvtramp_descr.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	*descrp = hdesc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	hdesc->cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 	hdesc->num_mappings = num_kernel_image_mappings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	tb = &trap_block[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	hdesc->thread_reg = thread_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	tte_vaddr = (unsigned long) KERNBASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	tte_data = kern_locked_tte_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	for (i = 0; i < hdesc->num_mappings; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 		hdesc->maps[i].vaddr = tte_vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 		hdesc->maps[i].tte   = tte_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 		tte_vaddr += 0x400000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 		tte_data  += 0x400000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 				 __pa(hdesc));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	if (hv_err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 		       "gives error %lu\n", hv_err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) extern unsigned long sparc64_cpu_startup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) /* The OBP cpu startup callback truncates the 3rd arg cookie to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345)  * 32-bits (I think) so to be safe we have it read the pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346)  * contained here so we work on >4GB machines. -DaveM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) static struct thread_info *cpu_new_thread = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	unsigned long entry =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 		(unsigned long)(&sparc64_cpu_startup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	unsigned long cookie =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 		(unsigned long)(&cpu_new_thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	void *descr = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	int timeout, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	callin_flag = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	cpu_new_thread = task_thread_info(idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	if (tlb_type == hypervisor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 		if (ldom_domaining_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 			ldom_startcpu_cpuid(cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 					    (unsigned long) cpu_new_thread,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 					    &descr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 			prom_startcpu_cpuid(cpu, entry, cookie);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 		struct device_node *dp = of_find_node_by_cpuid(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 		prom_startcpu(dp->phandle, entry, cookie);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	for (timeout = 0; timeout < 50000; timeout++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 		if (callin_flag)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 		udelay(100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	if (callin_flag) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 		ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 		printk("Processor %d is stuck.\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 		ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	cpu_new_thread = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	kfree(descr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	u64 result, target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	int stuck, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 	if (this_is_starfire) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 		/* map to real upaid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 		cpu = (((cpu & 0x3c) << 1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 			((cpu & 0x40) >> 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 			(cpu & 0x3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	target = (cpu << 14) | 0x70;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) again:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	/* Ok, this is the real Spitfire Errata #54.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	 * One must read back from a UDB internal register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	 * after writes to the UDB interrupt dispatch, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	 * before the membar Sync for that write.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	 * So we use the high UDB control register (ASI 0x7f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	 * ADDR 0x20) for the dummy read. -DaveM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	tmp = 0x40;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	__asm__ __volatile__(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	"wrpr	%1, %2, %%pstate\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	"stxa	%4, [%0] %3\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	"stxa	%5, [%0+%8] %3\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	"add	%0, %8, %0\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	"stxa	%6, [%0+%8] %3\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	"membar	#Sync\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	"stxa	%%g0, [%7] %3\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	"membar	#Sync\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	"mov	0x20, %%g1\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	"membar	#Sync"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 	: "=r" (tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	  "r" (0x10), "0" (tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434)         : "g1");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	/* NOTE: PSTATE_IE is still clear. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	stuck = 100000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 			: "=r" (result)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 			: "i" (ASI_INTR_DISPATCH_STAT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 		if (result == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 					     : : "r" (pstate));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 		stuck -= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 		if (stuck == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	} while (result & 0x1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 			     : : "r" (pstate));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	if (stuck == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 		       smp_processor_id(), result);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 		udelay(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 		goto again;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	u64 *mondo, data0, data1, data2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 	u16 *cpu_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	u64 pstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	cpu_list = __va(tb->cpu_list_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	mondo = __va(tb->cpu_mondo_block_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	data0 = mondo[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	data1 = mondo[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 	data2 = mondo[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	for (i = 0; i < cnt; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480)  * packet, but we have no use for that.  However we do take advantage of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481)  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	int nack_busy_id, is_jbus, need_more;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 	u64 *mondo, pstate, ver, busy_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	u16 *cpu_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 	cpu_list = __va(tb->cpu_list_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 	mondo = __va(tb->cpu_mondo_block_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	/* Unfortunately, someone at Sun had the brilliant idea to make the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	 * derivative processor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 		   (ver >> 32) == __SERRANO_ID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	need_more = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 			     : : "r" (pstate), "i" (PSTATE_IE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	/* Setup the dispatch data registers. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 			     "stxa	%1, [%4] %6\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 			     "stxa	%2, [%5] %6\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 			     "membar	#Sync\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 			     : /* no outputs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 			       "r" (0x40), "r" (0x50), "r" (0x60),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 			       "i" (ASI_INTR_W));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 	nack_busy_id = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 	busy_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 		for (i = 0; i < cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 			u64 target, nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 			nr = cpu_list[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 			if (nr == 0xffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 			target = (nr << 14) | 0x70;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 			if (is_jbus) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 				busy_mask |= (0x1UL << (nr * 2));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 				target |= (nack_busy_id << 24);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 				busy_mask |= (0x1UL <<
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 					      (nack_busy_id * 2));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 			__asm__ __volatile__(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 				"stxa	%%g0, [%0] %1\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 				"membar	#Sync\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 				: /* no outputs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 				: "r" (target), "i" (ASI_INTR_W));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 			nack_busy_id++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 			if (nack_busy_id == 32) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 				need_more = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	/* Now, poll for completion. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 		u64 dispatch_stat, nack_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 		long stuck;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 		stuck = 100000 * nack_busy_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 		nack_mask = busy_mask << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 					     : "=r" (dispatch_stat)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 					     : "i" (ASI_INTR_DISPATCH_STAT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 						     : : "r" (pstate));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 				if (unlikely(need_more)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 					int i, this_cnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 					for (i = 0; i < cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 						if (cpu_list[i] == 0xffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 							continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 						cpu_list[i] = 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 						this_cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 						if (this_cnt == 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 							break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 					}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 					goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 				return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 			if (!--stuck)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 		} while (dispatch_stat & busy_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 				     : : "r" (pstate));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 		if (dispatch_stat & busy_mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 			/* Busy bits will not clear, continue instead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 			 * of freezing up on this cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 			       smp_processor_id(), dispatch_stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 			int i, this_busy_nack = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 			/* Delay some random time with interrupts enabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 			 * to prevent deadlock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 			udelay(2 * nack_busy_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 			/* Clear out the mask bits for cpus which did not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 			 * NACK us.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 			for (i = 0; i < cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 				u64 check_mask, nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 				nr = cpu_list[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 				if (nr == 0xffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 				if (is_jbus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 					check_mask = (0x2UL << (2*nr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 				else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 					check_mask = (0x2UL <<
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 						      this_busy_nack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 				if ((dispatch_stat & check_mask) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 					cpu_list[i] = 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 				this_busy_nack += 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 				if (this_busy_nack == 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 			goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) #define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) #define	MONDO_USEC_WAIT_MIN		2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) #define	MONDO_USEC_WAIT_MAX		100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) #define	MONDO_RETRY_LIMIT		500000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) /* Multi-cpu list version.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633)  * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634)  * Sometimes not all cpus receive the mondo, requiring us to re-send
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635)  * the mondo until all cpus have received, or cpus are truly stuck
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636)  * unable to receive mondo, and we timeout.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637)  * Occasionally a target cpu strand is borrowed briefly by hypervisor to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638)  * perform guest service, such as PCIe error handling. Consider the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639)  * service time, 1 second overall wait is reasonable for 1 cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640)  * Here two in-between mondo check wait time are defined: 2 usec for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641)  * single cpu quick turn around and up to 100usec for large cpu count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642)  * Deliver mondo to large number of cpus could take longer, we adjusts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643)  * the retry count as long as target cpus are making forward progress.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	int this_cpu, tot_cpus, prev_sent, i, rem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	int usec_wait, retries, tot_retries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	u16 first_cpu = 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 	unsigned long xc_rcvd = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	unsigned long status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	int ecpuerror_id = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	int enocpu_id = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	u16 *cpu_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	u16 cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	this_cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	cpu_list = __va(tb->cpu_list_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	if (usec_wait > MONDO_USEC_WAIT_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 		usec_wait = MONDO_USEC_WAIT_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	retries = tot_retries = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	tot_cpus = cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	prev_sent = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 		int n_sent, mondo_delivered, target_cpu_busy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 		status = sun4v_cpu_mondo_send(cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 					      tb->cpu_list_pa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 					      tb->cpu_mondo_block_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 		/* HV_EOK means all cpus received the xcall, we're done.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 		if (likely(status == HV_EOK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 			goto xcall_done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 		/* If not these non-fatal errors, panic */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 		if (unlikely((status != HV_EWOULDBLOCK) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 			(status != HV_ECPUERROR) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 			(status != HV_ENOCPU)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 			goto fatal_errors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 		/* First, see if we made any forward progress.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		 * Go through the cpu_list, count the target cpus that have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 		 * received our mondo (n_sent), and those that did not (rem).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 		 * Re-pack cpu_list with the cpus remain to be retried in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		 * front - this simplifies tracking the truly stalled cpus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 		 * The hypervisor indicates successful sends by setting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 		 * cpu list entries to the value 0xffff.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 		 * EWOULDBLOCK means some target cpus did not receive the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 		 * mondo and retry usually helps.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 		 * ECPUERROR means at least one target cpu is in error state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 		 * it's usually safe to skip the faulty cpu and retry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 		 * ENOCPU means one of the target cpu doesn't belong to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 		 * domain, perhaps offlined which is unexpected, but not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 		 * fatal and it's okay to skip the offlined cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		rem = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 		n_sent = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 		for (i = 0; i < cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 			cpu = cpu_list[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 			if (likely(cpu == 0xffff)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 				n_sent++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 			} else if ((status == HV_ECPUERROR) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 				ecpuerror_id = cpu + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 				enocpu_id = cpu + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 				cpu_list[rem++] = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 		/* No cpu remained, we're done. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 		if (rem == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 		/* Otherwise, update the cpu count for retry. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 		cnt = rem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		/* Record the overall number of mondos received by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 		 * first of the remaining cpus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 		if (first_cpu != cpu_list[0]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 			first_cpu = cpu_list[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 		/* Was any mondo delivered successfully? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 		mondo_delivered = (n_sent > prev_sent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 		prev_sent = n_sent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 		/* or, was any target cpu busy processing other mondos? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 		/* Retry count is for no progress. If we're making progress,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 		 * reset the retry count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 		if (likely(mondo_delivered || target_cpu_busy)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 			tot_retries += retries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 			retries = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 			goto fatal_mondo_timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 		/* Delay a little bit to let other cpus catch up on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 		 * their cpu mondo queue work.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 		if (!mondo_delivered)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 			udelay(usec_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 		retries++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	} while (1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) xcall_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	if (unlikely(ecpuerror_id > 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 		       this_cpu, ecpuerror_id - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	} else if (unlikely(enocpu_id > 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 		       this_cpu, enocpu_id - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) fatal_errors:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	/* fatal errors include bad alignment, etc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	panic("Unexpected SUN4V mondo error %lu\n", status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) fatal_mondo_timeout:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	/* some cpus being non-responsive to the cpu mondo */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	panic("SUN4V mondo timeout panic\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	struct trap_per_cpu *tb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	int this_cpu, i, cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	u16 *cpu_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	u64 *mondo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	/* We have to do this whole thing with interrupts fully disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	 * Otherwise if we send an xcall from interrupt context it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	 * corrupt both our mondo block and cpu list state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	 * One consequence of this is that we cannot use timeout mechanisms
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	 * that depend upon interrupts being delivered locally.  So, for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	 * example, we cannot sample jiffies and expect it to advance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	this_cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	tb = &trap_block[this_cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	mondo = __va(tb->cpu_mondo_block_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 	mondo[0] = data0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	mondo[1] = data1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	mondo[2] = data2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	cpu_list = __va(tb->cpu_list_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	/* Setup the initial cpu list.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	cnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	for_each_cpu(i, mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		if (i == this_cpu || !cpu_online(i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		cpu_list[cnt++] = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 	if (cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		xcall_deliver_impl(tb, cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) /* Send cross call to all processors mentioned in MASK_P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832)  * except self.  Really, there are only two cases currently,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833)  * "cpu_online_mask" and "mm_cpumask(mm)".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	xcall_deliver(data0, data1, data2, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) /* Send cross call to all processors except self. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) extern unsigned long xcall_sync_tick;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) static void smp_start_sync_tick_client(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 		      cpumask_of(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) extern unsigned long xcall_call_function;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) void arch_send_call_function_ipi_mask(const struct cpumask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) extern unsigned long xcall_call_function_single;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) void arch_send_call_function_single_ipi(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 		      cpumask_of(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	clear_softint(1 << irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	irq_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	generic_smp_call_function_interrupt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	irq_exit();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	clear_softint(1 << irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	irq_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	generic_smp_call_function_single_interrupt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	irq_exit();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) static void tsb_sync(void *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	struct mm_struct *mm = info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	/* It is not valid to test "current->active_mm == mm" here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	 * The value of "current" is not changed atomically with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 	 * switch_mm().  But that's OK, we just need to check the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 	 * current cpu's trap block PGD physical address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	if (tp->pgd_paddr == __pa(mm->pgd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 		tsb_context_switch(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) void smp_tsb_sync(struct mm_struct *mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) extern unsigned long xcall_flush_tlb_mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) extern unsigned long xcall_flush_tlb_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) extern unsigned long xcall_flush_tlb_kernel_range;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) extern unsigned long xcall_fetch_glob_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) extern unsigned long xcall_fetch_glob_pmu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) extern unsigned long xcall_fetch_glob_pmu_n4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) extern unsigned long xcall_receive_signal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) extern unsigned long xcall_new_mmu_context_version;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) #ifdef CONFIG_KGDB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) extern unsigned long xcall_kgdb_capture;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) #ifdef DCACHE_ALIASING_POSSIBLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) extern unsigned long xcall_flush_dcache_page_cheetah;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) extern unsigned long xcall_flush_dcache_page_spitfire;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) static inline void __local_flush_dcache_page(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) #ifdef DCACHE_ALIASING_POSSIBLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	__flush_dcache_page(page_address(page),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 			    ((tlb_type == spitfire) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 			     page_mapping_file(page) != NULL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	if (page_mapping_file(page) != NULL &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	    tlb_type == spitfire)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 		__flush_icache_page(__pa(page_address(page)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) void smp_flush_dcache_page_impl(struct page *page, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	int this_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	if (tlb_type == hypervisor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) #ifdef CONFIG_DEBUG_DCFLUSH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	atomic_inc(&dcpage_flushes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	this_cpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	if (cpu == this_cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 		__local_flush_dcache_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	} else if (cpu_online(cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		void *pg_addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 		u64 data0 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 		if (tlb_type == spitfire) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 			if (page_mapping_file(page) != NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 				data0 |= ((u64)1 << 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) #ifdef DCACHE_ALIASING_POSSIBLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 		if (data0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 			xcall_deliver(data0, __pa(pg_addr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 				      (u64) pg_addr, cpumask_of(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) #ifdef CONFIG_DEBUG_DCFLUSH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 			atomic_inc(&dcpage_flushes_xcall);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	void *pg_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	u64 data0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 	if (tlb_type == hypervisor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) #ifdef CONFIG_DEBUG_DCFLUSH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	atomic_inc(&dcpage_flushes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	data0 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	pg_addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	if (tlb_type == spitfire) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 		if (page_mapping_file(page) != NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 			data0 |= ((u64)1 << 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) #ifdef DCACHE_ALIASING_POSSIBLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	if (data0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 		xcall_deliver(data0, __pa(pg_addr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 			      (u64) pg_addr, cpu_online_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) #ifdef CONFIG_DEBUG_DCFLUSH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 		atomic_inc(&dcpage_flushes_xcall);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	__local_flush_dcache_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) #ifdef CONFIG_KGDB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) void kgdb_roundup_cpus(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) void smp_fetch_global_regs(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) void smp_fetch_global_pmu(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	if (tlb_type == hypervisor &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) /* We know that the window frames of the user have been flushed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035)  * to the stack before we get here because all callers of us
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036)  * are flush_tlb_*() routines, and these run after flush_cache_*()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037)  * which performs the flushw.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039)  * mm->cpu_vm_mask is a bit mask of which cpus an address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040)  * space has (potentially) executed on, this is the heuristic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)  * we use to limit cross calls.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) /* This currently is only used by the hugetlb arch pre-fault
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)  * hook on UltraSPARC-III+ and later when changing the pagesize
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046)  * bits of the context register for an address space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) void smp_flush_tlb_mm(struct mm_struct *mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	u32 ctx = CTX_HWBITS(mm->context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	smp_cross_call_masked(&xcall_flush_tlb_mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 			      ctx, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 			      mm_cpumask(mm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) struct tlb_pending_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	unsigned long ctx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	unsigned long nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	unsigned long *vaddrs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) static void tlb_pending_func(void *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	struct tlb_pending_info *t = info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	u32 ctx = CTX_HWBITS(mm->context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 	struct tlb_pending_info info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	info.ctx = ctx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	info.nr = nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	info.vaddrs = vaddrs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 			       &info, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	__flush_tlb_pending(ctx, nr, vaddrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	unsigned long context = CTX_HWBITS(mm->context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	smp_cross_call_masked(&xcall_flush_tlb_page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 			      context, vaddr, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 			      mm_cpumask(mm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	__flush_tlb_page(context, vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	start &= PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	end    = PAGE_ALIGN(end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	if (start != end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 		smp_cross_call(&xcall_flush_tlb_kernel_range,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 			       0, start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 		__flush_tlb_kernel_range(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) /* CPU capture. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) /* #define CAPTURE_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) extern unsigned long xcall_capture;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) static atomic_t smp_capture_depth = ATOMIC_INIT(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) static atomic_t smp_capture_registry = ATOMIC_INIT(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) static unsigned long penguins_are_doing_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) void smp_capture(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 	int result = atomic_add_return(1, &smp_capture_depth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	if (result == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 		int ncpus = num_online_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) #ifdef CAPTURE_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 		printk("CPU[%d]: Sending penguins to jail...",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 		       smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 		penguins_are_doing_time = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 		atomic_inc(&smp_capture_registry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 		smp_cross_call(&xcall_capture, 0, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 		while (atomic_read(&smp_capture_registry) != ncpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 			rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) #ifdef CAPTURE_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 		printk("done\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) void smp_release(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	if (atomic_dec_and_test(&smp_capture_depth)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) #ifdef CAPTURE_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 		printk("CPU[%d]: Giving pardon to "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 		       "imprisoned penguins\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 		       smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 		penguins_are_doing_time = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 		membar_safe("#StoreLoad");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 		atomic_dec(&smp_capture_registry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167)  * set, so they can service tlb flush xcalls...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) extern void prom_world(int);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	clear_softint(1 << irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	__asm__ __volatile__("flushw");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	prom_world(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	atomic_inc(&smp_capture_registry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	membar_safe("#StoreLoad");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	while (penguins_are_doing_time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 		rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	atomic_dec(&smp_capture_registry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	prom_world(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) /* /proc/profile writes can call this, don't __init it please. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) int setup_profiling_timer(unsigned int multiplier)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) void __init smp_prepare_cpus(unsigned int max_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) void smp_prepare_boot_cpu(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) void __init smp_setup_processor_id(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	if (tlb_type == spitfire)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 		xcall_deliver_impl = spitfire_xcall_deliver;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		xcall_deliver_impl = cheetah_xcall_deliver;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 		xcall_deliver_impl = hypervisor_xcall_deliver;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) void __init smp_fill_in_cpu_possible_map(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	int possible_cpus = num_possible_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	if (possible_cpus > nr_cpu_ids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 		possible_cpus = nr_cpu_ids;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 	for (i = 0; i < possible_cpus; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 		set_cpu_possible(i, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	for (; i < NR_CPUS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 		set_cpu_possible(i, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) void smp_fill_in_sib_core_maps(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 	for_each_present_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 		unsigned int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 		cpumask_clear(&cpu_core_map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 		if (cpu_data(i).core_id == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 			cpumask_set_cpu(i, &cpu_core_map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 		for_each_present_cpu(j) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 			if (cpu_data(i).core_id ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 			    cpu_data(j).core_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 				cpumask_set_cpu(j, &cpu_core_map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	for_each_present_cpu(i)  {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 		unsigned int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 		for_each_present_cpu(j)  {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 			if (cpu_data(i).max_cache_id ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 			    cpu_data(j).max_cache_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 	for_each_present_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 		unsigned int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 		if (cpu_data(i).proc_id == -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 		for_each_present_cpu(j) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 			if (cpu_data(i).proc_id ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 			    cpu_data(j).proc_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) int __cpu_up(unsigned int cpu, struct task_struct *tidle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 	int ret = smp_boot_one_cpu(cpu, tidle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 	if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 		cpumask_set_cpu(cpu, &smp_commenced_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 		while (!cpu_online(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 			mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 		if (!cpu_online(cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 			ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 			/* On SUN4V, writes to %tick and %stick are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 			 * not allowed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 			if (tlb_type != hypervisor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 				smp_synchronize_one_tick(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) void cpu_play_dead(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 	int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	unsigned long pstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	idle_task_exit();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	if (tlb_type == hypervisor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 		struct trap_per_cpu *tb = &trap_block[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 				tb->cpu_mondo_pa, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 				tb->dev_mondo_pa, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 				tb->resum_mondo_pa, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 				tb->nonresum_mondo_pa, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	membar_safe("#Sync");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 	local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 	__asm__ __volatile__(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 		"rdpr	%%pstate, %0\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 		"wrpr	%0, %1, %%pstate"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 		: "=r" (pstate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 		: "i" (PSTATE_IE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	while (1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 		barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) int __cpu_disable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 	cpuinfo_sparc *c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 	for_each_cpu(i, &cpu_core_map[cpu])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	cpumask_clear(&cpu_core_map[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 	c = &cpu_data(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 	c->core_id = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	c->proc_id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	/* Make sure no interrupts point to this cpu.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	fixup_irqs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	mdelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	set_cpu_online(cpu, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 	cpu_map_rebuild();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) void __cpu_die(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	for (i = 0; i < 100; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 		smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 		msleep(100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) #if defined(CONFIG_SUN_LDOMS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 		unsigned long hv_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 		int limit = 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 		do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 			hv_err = sun4v_cpu_stop(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 			if (hv_err == HV_EOK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 				set_cpu_present(cpu, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 		} while (--limit > 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 		if (limit <= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 			       hv_err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) void __init smp_cpus_done(unsigned int max_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) static void send_cpu_ipi(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	xcall_deliver((u64) &xcall_receive_signal,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 			0, 0, cpumask_of(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) void scheduler_poke(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 	if (!cpu_poke)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	if (!__this_cpu_read(poke))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 	__this_cpu_write(poke, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) static unsigned long send_cpu_poke(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 	unsigned long hv_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	per_cpu(poke, cpu) = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	hv_err = sun4v_cpu_poke(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 	if (hv_err != HV_EOK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 		per_cpu(poke, cpu) = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 		pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 				    __func__, hv_err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	return hv_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) void smp_send_reschedule(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 	if (cpu == smp_processor_id()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 		WARN_ON_ONCE(preemptible());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 	/* Use cpu poke to resume idle cpu if supported. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 	if (cpu_poke && idle_cpu(cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 		unsigned long ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 		ret = send_cpu_poke(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 		if (ret == HV_EOK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 	/* Use IPI in following cases:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 	 * - cpu poke not supported
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 	 * - cpu not idle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 	 * - send_cpu_poke() returns with error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 	send_cpu_ipi(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) void smp_init_cpu_poke(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 	unsigned long major;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 	unsigned long minor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 	if (tlb_type != hypervisor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 	ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 		pr_debug("HV_GRP_CORE is not registered\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 	if (major == 1 && minor >= 6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 		/* CPU POKE is registered. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 		cpu_poke = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 	pr_debug("CPU_POKE not supported\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	clear_softint(1 << irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 	scheduler_ipi();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) static void stop_this_cpu(void *dummy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 	set_cpu_online(smp_processor_id(), false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 	prom_stopself();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) void smp_send_stop(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	if (tlb_type == hypervisor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 		int this_cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) #ifdef CONFIG_SERIAL_SUNHV
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 		sunhv_migrate_hvcons_irq(this_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 		for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 			if (cpu == this_cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 			set_cpu_online(cpu, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) #ifdef CONFIG_SUN_LDOMS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 			if (ldom_domaining_enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 				unsigned long hv_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 				hv_err = sun4v_cpu_stop(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 				if (hv_err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 					printk(KERN_ERR "sun4v_cpu_stop() "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 					       "failed err=%lu\n", hv_err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 			} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 				prom_stopcpu_cpuid(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 		smp_call_function(stop_this_cpu, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530)  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531)  * @cpu: cpu to allocate for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532)  * @size: size allocation in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533)  * @align: alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535)  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536)  * does the right thing for NUMA regardless of the current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537)  * configuration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540)  * Pointer to the allocated area on success, NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 					size_t align)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) #ifdef CONFIG_NEED_MULTIPLE_NODES
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	int node = cpu_to_node(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 	void *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 	if (!node_online(node) || !NODE_DATA(node)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 		ptr = memblock_alloc_from(size, align, goal);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 		pr_info("cpu %d has no node %d or node-local memory\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 			cpu, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 			 cpu, size, __pa(ptr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 		ptr = memblock_alloc_try_nid(size, align, goal,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 					     MEMBLOCK_ALLOC_ACCESSIBLE, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 			 "%016lx\n", cpu, size, node, __pa(ptr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 	return ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	return memblock_alloc_from(size, align, goal);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) static void __init pcpu_free_bootmem(void *ptr, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	memblock_free(__pa(ptr), size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	if (cpu_to_node(from) == cpu_to_node(to))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 		return LOCAL_DISTANCE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 		return REMOTE_DISTANCE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) static void __init pcpu_populate_pte(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 	pgd_t *pgd = pgd_offset_k(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 	p4d_t *p4d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	pud_t *pud;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	pmd_t *pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 	if (pgd_none(*pgd)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 		pud_t *new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 		if (!new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 			goto err_alloc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 		pgd_populate(&init_mm, pgd, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 	p4d = p4d_offset(pgd, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	if (p4d_none(*p4d)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 		pud_t *new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 		if (!new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 			goto err_alloc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 		p4d_populate(&init_mm, p4d, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	pud = pud_offset(p4d, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 	if (pud_none(*pud)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 		pmd_t *new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 		if (!new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 			goto err_alloc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 		pud_populate(&init_mm, pud, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	pmd = pmd_offset(pud, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 	if (!pmd_present(*pmd)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 		pte_t *new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 		if (!new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 			goto err_alloc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 		pmd_populate_kernel(&init_mm, pmd, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) err_alloc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) void __init setup_per_cpu_areas(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 	unsigned long delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 	int rc = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 					    pcpu_cpu_distance,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 					    pcpu_alloc_bootmem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 					    pcpu_free_bootmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 		if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 			pr_warn("PERCPU: %s allocator failed (%d), "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 				"falling back to page size\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 				pcpu_fc_names[pcpu_chosen_fc], rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 					   pcpu_alloc_bootmem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 					   pcpu_free_bootmem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 					   pcpu_populate_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 		panic("cannot initialize percpu area (err=%d)", rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 	/* Setup %g5 for the boot cpu.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 	of_fill_in_cpu_data();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 	if (tlb_type == hypervisor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 		mdesc_fill_in_cpu_data(cpu_all_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) }