^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) 2008 Matt Fleming <matt@console-pimps.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright (C) 2008 Paul Mundt <lethal@linux-sh.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Code for replacing ftrace calls with jumps.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * Thanks goes to Ingo Molnar, for suggesting the idea.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * Mathieu Desnoyers, for suggesting postponing the modifications.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * Arjan van de Ven, for keeping me straight, and explaining to me
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * the dangers of modifying code on the run.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/ftrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <asm/ftrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <asm/unistd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <trace/syscall.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #ifdef CONFIG_DYNAMIC_FTRACE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) static unsigned char ftrace_replaced_code[MCOUNT_INSN_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) static unsigned char ftrace_nop[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) * If we're trying to nop out a call to a function, we instead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * place a call to the address after the memory table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * 8c011060 <a>:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * 8c011060: 02 d1 mov.l 8c01106c <a+0xc>,r1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) * 8c011062: 22 4f sts.l pr,@-r15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * 8c011064: 02 c7 mova 8c011070 <a+0x10>,r0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) * 8c011066: 2b 41 jmp @r1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * 8c011068: 2a 40 lds r0,pr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * 8c01106a: 09 00 nop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * 8c01106c: 68 24 .word 0x2468 <--- ip
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * 8c01106e: 1d 8c .word 0x8c1d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * 8c011070: 26 4f lds.l @r15+,pr <--- ip + MCOUNT_INSN_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * We write 0x8c011070 to 0x8c01106c so that on entry to a() we branch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * past the _mcount call and continue executing code like normal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) static unsigned char *ftrace_nop_replace(unsigned long ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) __raw_writel(ip + MCOUNT_INSN_SIZE, ftrace_nop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) return ftrace_nop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) /* Place the address in the memory table. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) __raw_writel(addr, ftrace_replaced_code);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) * No locking needed, this must be called via kstop_machine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) * which in essence is like running on a uniprocessor machine.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) return ftrace_replaced_code;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * Modifying code must take extra care. On an SMP machine, if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * the code being modified is also being executed on another CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) * that CPU will have undefined results and possibly take a GPF.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) * We use kstop_machine to stop other CPUS from exectuing code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) * But this does not stop NMIs from happening. We still need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) * to protect against that. We separate out the modification of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) * the code to take care of this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) * Two buffers are added: An IP buffer and a "code" buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) * 1) Put the instruction pointer into the IP buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) * and the new code into the "code" buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) * 2) Wait for any running NMIs to finish and set a flag that says
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * we are modifying code, it is done in an atomic operation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) * 3) Write the code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) * 4) clear the flag.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) * 5) Wait for any running NMIs to finish.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) * If an NMI is executed, the first thing it does is to call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) * "ftrace_nmi_enter". This will check if the flag is set to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) * and if it is, it will write what is in the IP and "code" buffers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) * The trick is, it does not matter if everyone is writing the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) * content to the code location. Also, if a CPU is executing code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) * it is OK to write to that code location if the contents being written
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) * are the same as what exists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #define MOD_CODE_WRITE_FLAG (1 << 31) /* set when NMI should do the write */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) static atomic_t nmi_running = ATOMIC_INIT(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) static int mod_code_status; /* holds return value of text write */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) static void *mod_code_ip; /* holds the IP to write to */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) static void *mod_code_newcode; /* holds the text to write to the IP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) static void clear_mod_flag(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) int old = atomic_read(&nmi_running);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) int new = old & ~MOD_CODE_WRITE_FLAG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) if (old == new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) old = atomic_cmpxchg(&nmi_running, old, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) static void ftrace_mod_code(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) * Yes, more than one CPU process can be writing to mod_code_status.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) * (and the code itself)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) * But if one were to fail, then they all should, and if one were
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * to succeed, then they all should.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) mod_code_status = copy_to_kernel_nofault(mod_code_ip, mod_code_newcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) MCOUNT_INSN_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) /* if we fail, then kill any new writers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) if (mod_code_status)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) clear_mod_flag();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) void arch_ftrace_nmi_enter(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) ftrace_mod_code();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) /* Must have previous changes seen before executions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) void arch_ftrace_nmi_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) /* Finish all executions before clearing nmi_running */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) atomic_dec(&nmi_running);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) static void wait_for_nmi_and_set_mod_flag(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) } while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) static void wait_for_nmi(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) if (!atomic_read(&nmi_running))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) } while (atomic_read(&nmi_running));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) do_ftrace_mod_code(unsigned long ip, void *new_code)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) mod_code_ip = (void *)ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) mod_code_newcode = new_code;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) /* The buffers need to be visible before we let NMIs write them */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) wait_for_nmi_and_set_mod_flag();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) /* Make sure all running NMIs have finished before we write the code */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) ftrace_mod_code();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) /* Make sure the write happens before clearing the bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) clear_mod_flag();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) wait_for_nmi();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) return mod_code_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) static int ftrace_modify_code(unsigned long ip, unsigned char *old_code,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) unsigned char *new_code)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) unsigned char replaced[MCOUNT_INSN_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) * Note:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) * We are paranoid about modifying text, as if a bug was to happen, it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) * could cause us to read or write to someplace that could cause harm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) * Carefully read and modify the code with probe_kernel_*(), and make
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * sure what we read is what we expected it to be before modifying it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) /* read the text we want to modify */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) if (copy_from_kernel_nofault(replaced, (void *)ip, MCOUNT_INSN_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) /* Make sure it is what we expect it to be */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) /* replace the text with the new text */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) if (do_ftrace_mod_code(ip, new_code))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) flush_icache_range(ip, ip + MCOUNT_INSN_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) int ftrace_update_ftrace_func(ftrace_func_t func)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) unsigned long ip = (unsigned long)(&ftrace_call) + MCOUNT_INSN_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) unsigned char old[MCOUNT_INSN_SIZE], *new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) memcpy(old, (unsigned char *)ip, MCOUNT_INSN_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) new = ftrace_call_replace(ip, (unsigned long)func);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) return ftrace_modify_code(ip, old, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) int ftrace_make_nop(struct module *mod,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) struct dyn_ftrace *rec, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) unsigned char *new, *old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) unsigned long ip = rec->ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) old = ftrace_call_replace(ip, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) new = ftrace_nop_replace(ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) return ftrace_modify_code(rec->ip, old, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) unsigned char *new, *old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) unsigned long ip = rec->ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) old = ftrace_nop_replace(ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) new = ftrace_call_replace(ip, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) return ftrace_modify_code(rec->ip, old, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) int __init ftrace_dyn_arch_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) #endif /* CONFIG_DYNAMIC_FTRACE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) #ifdef CONFIG_FUNCTION_GRAPH_TRACER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) #ifdef CONFIG_DYNAMIC_FTRACE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) extern void ftrace_graph_call(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) static int ftrace_mod(unsigned long ip, unsigned long old_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) unsigned long new_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) unsigned char code[MCOUNT_INSN_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) if (copy_from_kernel_nofault(code, (void *)ip, MCOUNT_INSN_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) if (old_addr != __raw_readl((unsigned long *)code))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) __raw_writel(new_addr, ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) int ftrace_enable_ftrace_graph_caller(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) unsigned long ip, old_addr, new_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) ip = (unsigned long)(&ftrace_graph_call) + GRAPH_INSN_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) old_addr = (unsigned long)(&skip_trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) new_addr = (unsigned long)(&ftrace_graph_caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) return ftrace_mod(ip, old_addr, new_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) int ftrace_disable_ftrace_graph_caller(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) unsigned long ip, old_addr, new_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) ip = (unsigned long)(&ftrace_graph_call) + GRAPH_INSN_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) old_addr = (unsigned long)(&ftrace_graph_caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) new_addr = (unsigned long)(&skip_trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) return ftrace_mod(ip, old_addr, new_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) #endif /* CONFIG_DYNAMIC_FTRACE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) * Hook the return address and push it in the stack of return addrs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) * in the current thread info.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) * This is the main routine for the function graph tracer. The function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) * graph tracer essentially works like this:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) * parent is the stack address containing self_addr's return address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) * We pull the real return address out of parent and store it in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) * current's ret_stack. Then, we replace the return address on the stack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) * with the address of return_to_handler. self_addr is the function that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) * called mcount.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) * When self_addr returns, it will jump to return_to_handler which calls
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) * ftrace_return_to_handler. ftrace_return_to_handler will pull the real
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) * return address off of current's ret_stack and jump to it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) unsigned long old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) int faulted;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) unsigned long return_hooker = (unsigned long)&return_to_handler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) if (unlikely(ftrace_graph_is_dead()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) if (unlikely(atomic_read(¤t->tracing_graph_pause)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) * Protect against fault, even if it shouldn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) * happen. This tool is too much intrusive to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) * ignore such a protection.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) __asm__ __volatile__(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) "1: \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) "mov.l @%2, %0 \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) "2: \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) "mov.l %3, @%2 \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) "mov #0, %1 \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) "3: \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) ".section .fixup, \"ax\" \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) "4: \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) "mov.l 5f, %0 \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) "jmp @%0 \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) " mov #1, %1 \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) ".balign 4 \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) "5: .long 3b \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) ".previous \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) ".section __ex_table,\"a\" \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) ".long 1b, 4b \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) ".long 2b, 4b \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) ".previous \n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) : "=&r" (old), "=r" (faulted)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) : "r" (parent), "r" (return_hooker)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) if (unlikely(faulted)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) ftrace_graph_stop();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) WARN_ON(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) if (function_graph_enter(old, self_addr, 0, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) __raw_writel(old, parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) #endif /* CONFIG_FUNCTION_GRAPH_TRACER */