^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* SPDX-License-Identifier: GPL-2.0-only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) 2012 Regents of the University of California
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) #ifndef _ASM_RISCV_PGTABLE_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #define _ASM_RISCV_PGTABLE_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/mmzone.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/sizes.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <asm/pgtable-bits.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #ifndef __ASSEMBLY__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) /* Page Upper Directory not used in RISC-V */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <asm-generic/pgtable-nopud.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <asm/page.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <asm/tlbflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/mm_types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #ifdef CONFIG_MMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define VMALLOC_END (PAGE_OFFSET - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define BPF_JIT_REGION_SIZE (SZ_128M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define BPF_JIT_REGION_END (VMALLOC_END)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * Roughly size the vmemmap space to be large enough to fit enough
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * struct pages to map half the virtual address space. Then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * position vmemmap directly below the VMALLOC region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define VMEMMAP_SHIFT \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define VMEMMAP_END (VMALLOC_START - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #define vmemmap ((struct page *)VMEMMAP_START)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define PCI_IO_SIZE SZ_16M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #define PCI_IO_END VMEMMAP_START
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define FIXADDR_TOP PCI_IO_START
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #ifdef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define FIXADDR_SIZE PMD_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #define FIXADDR_SIZE PGDIR_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #ifdef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #include <asm/pgtable-64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #include <asm/pgtable-32.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #endif /* CONFIG_64BIT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #ifdef CONFIG_MMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) /* Number of entries in the page global directory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) /* Number of entries in the page table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) /* Number of PGD entries that a user-mode program can use */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) /* Page protection bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define PAGE_NONE __pgprot(_PAGE_PROT_NONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) _PAGE_EXEC | _PAGE_WRITE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) #define PAGE_COPY PAGE_READ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) #define PAGE_COPY_EXEC PAGE_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) #define PAGE_SHARED PAGE_WRITE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) #define _PAGE_KERNEL (_PAGE_READ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) | _PAGE_WRITE \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) | _PAGE_PRESENT \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) | _PAGE_ACCESSED \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) | _PAGE_DIRTY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) | _PAGE_EXEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define PAGE_TABLE __pgprot(_PAGE_TABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) * change the properties of memory regions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define _PAGE_IOREMAP _PAGE_KERNEL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) extern pgd_t swapper_pg_dir[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) /* MAP_PRIVATE permissions: xwr (copy-on-write) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) #define __P000 PAGE_NONE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #define __P001 PAGE_READ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) #define __P010 PAGE_COPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) #define __P011 PAGE_COPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) #define __P100 PAGE_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #define __P101 PAGE_READ_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) #define __P110 PAGE_COPY_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) #define __P111 PAGE_COPY_READ_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) /* MAP_SHARED permissions: xwr */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #define __S000 PAGE_NONE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) #define __S001 PAGE_READ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #define __S010 PAGE_SHARED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #define __S011 PAGE_SHARED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) #define __S100 PAGE_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #define __S101 PAGE_READ_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define __S110 PAGE_SHARED_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #define __S111 PAGE_SHARED_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) static inline int pmd_present(pmd_t pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static inline int pmd_none(pmd_t pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) return (pmd_val(pmd) == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) static inline int pmd_bad(pmd_t pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) return !pmd_present(pmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) #define pmd_leaf pmd_leaf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) static inline int pmd_leaf(pmd_t pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) return pmd_present(pmd) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) *pmdp = pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) static inline void pmd_clear(pmd_t *pmdp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) set_pmd(pmdp, __pmd(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) static inline unsigned long _pgd_pfn(pgd_t pgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) static inline struct page *pmd_page(pmd_t pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) static inline unsigned long pmd_page_vaddr(pmd_t pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) /* Yields the page frame number (PFN) of a page table entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) static inline unsigned long pte_pfn(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) return (pte_val(pte) >> _PAGE_PFN_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) #define pte_page(x) pfn_to_page(pte_pfn(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) /* Constructs a page table entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) static inline int pte_present(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) static inline int pte_none(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) return (pte_val(pte) == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) static inline int pte_write(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) return pte_val(pte) & _PAGE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) static inline int pte_exec(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) return pte_val(pte) & _PAGE_EXEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) static inline int pte_huge(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) return pte_present(pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) static inline int pte_dirty(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) return pte_val(pte) & _PAGE_DIRTY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) static inline int pte_young(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) return pte_val(pte) & _PAGE_ACCESSED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) static inline int pte_special(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) return pte_val(pte) & _PAGE_SPECIAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) /* static inline pte_t pte_rdprotect(pte_t pte) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) static inline pte_t pte_wrprotect(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) return __pte(pte_val(pte) & ~(_PAGE_WRITE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) /* static inline pte_t pte_mkread(pte_t pte) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) static inline pte_t pte_mkwrite(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) return __pte(pte_val(pte) | _PAGE_WRITE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) /* static inline pte_t pte_mkexec(pte_t pte) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) static inline pte_t pte_mkdirty(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) return __pte(pte_val(pte) | _PAGE_DIRTY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) static inline pte_t pte_mkclean(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) static inline pte_t pte_mkyoung(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) return __pte(pte_val(pte) | _PAGE_ACCESSED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) static inline pte_t pte_mkold(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) static inline pte_t pte_mkspecial(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) return __pte(pte_val(pte) | _PAGE_SPECIAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) static inline pte_t pte_mkhuge(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) /* Modify page protection bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) #define pgd_ERROR(e) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) /* Commit new configuration to MMU hardware */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) static inline void update_mmu_cache(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) unsigned long address, pte_t *ptep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) * The kernel assumes that TLBs don't cache invalid entries, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) * cache flush; it is necessary even after writing invalid entries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) * Relying on flush_tlb_fix_spurious_fault would suffice, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) * the extra traps reduce performance. So, eagerly SFENCE.VMA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) local_flush_tlb_page(address);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) #define __HAVE_ARCH_PTE_SAME
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) static inline int pte_same(pte_t pte_a, pte_t pte_b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) return pte_val(pte_a) == pte_val(pte_b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) * Certain architectures need to do special things when PTEs within
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) * a page table are directly modified. Thus, the following hook is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) * made available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) static inline void set_pte(pte_t *ptep, pte_t pteval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) *ptep = pteval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) void flush_icache_pte(pte_t pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) static inline void set_pte_at(struct mm_struct *mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) unsigned long addr, pte_t *ptep, pte_t pteval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) if (pte_present(pteval) && pte_exec(pteval))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) flush_icache_pte(pteval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) set_pte(ptep, pteval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) static inline void pte_clear(struct mm_struct *mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) unsigned long addr, pte_t *ptep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) set_pte_at(mm, addr, ptep, __pte(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) static inline int ptep_set_access_flags(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) unsigned long address, pte_t *ptep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) pte_t entry, int dirty)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) if (!pte_same(*ptep, entry))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) set_pte_at(vma->vm_mm, address, ptep, entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) * update_mmu_cache will unconditionally execute, handling both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) * the case that the PTE changed and the spurious fault case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) unsigned long address, pte_t *ptep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) unsigned long address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) pte_t *ptep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) if (!pte_young(*ptep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) #define __HAVE_ARCH_PTEP_SET_WRPROTECT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) static inline void ptep_set_wrprotect(struct mm_struct *mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) unsigned long address, pte_t *ptep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) unsigned long address, pte_t *ptep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) * This comment is borrowed from x86, but applies equally to RISC-V:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) * Clearing the accessed bit without a TLB flush
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) * doesn't cause data corruption. [ It could cause incorrect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) * page aging and the (mistaken) reclaim of hot pages, but the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) * chance of that should be relatively low. ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) * So as a performance optimization don't flush the TLB when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) * clearing the accessed bit, it will eventually be flushed by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) * a context switch or a VM operation anyway. [ In the rare
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) * event of it not getting flushed for a long time the delay
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) * shouldn't really matter because there's no real memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) * pressure for swapout to react to. ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) return ptep_test_and_clear_young(vma, address, ptep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) * Encode and decode a swap entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) * Format of swap PTE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) * bit 0: _PAGE_PRESENT (zero)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) * bit 1: _PAGE_PROT_NONE (zero)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) * bits 2 to 6: swap type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) * bits 7 to XLEN-1: swap offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) #define __SWP_TYPE_SHIFT 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) #define __SWP_TYPE_BITS 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) #define MAX_SWAPFILES_CHECK() \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) #define __swp_entry(type, offset) ((swp_entry_t) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) * In the RV64 Linux scheme, we give the user half of the virtual-address space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) * and give the kernel the other (upper) half.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) #ifdef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) #define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) #define KERN_VIRT_START FIXADDR_START
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) #ifdef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) #define TASK_SIZE FIXADDR_START
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) #else /* CONFIG_MMU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) #define PAGE_SHARED __pgprot(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) #define PAGE_KERNEL __pgprot(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) #define swapper_pg_dir NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) #define TASK_SIZE 0xffffffffUL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) #define VMALLOC_START 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) #define VMALLOC_END TASK_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) static inline void __kernel_map_pages(struct page *page, int numpages, int enable) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) #endif /* !CONFIG_MMU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) #define kern_addr_valid(addr) (1) /* FIXME */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) extern void *dtb_early_va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) extern uintptr_t dtb_early_pa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) void setup_bootmem(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) void paging_init(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) #define FIRST_USER_ADDRESS 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) * ZERO_PAGE is a global shared page that is always zero,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) * used for zero-mapped memory areas, etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) #endif /* !__ASSEMBLY__ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) #endif /* _ASM_RISCV_PGTABLE_H */