| |
| |
| |
| |
| |
| |
| |
| |
| |
| #undef DEBUG |
| |
| #include <linux/errno.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/loadavg.h> |
| #include <linux/sched/rt.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/completion.h> |
| #include <linux/vmalloc.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/numa.h> |
| #include <linux/mutex.h> |
| #include <linux/notifier.h> |
| #include <linux/kthread.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/spu.h> |
| #include <asm/spu_csa.h> |
| #include <asm/spu_priv1.h> |
| #include "spufs.h" |
| #define CREATE_TRACE_POINTS |
| #include "sputrace.h" |
| |
| struct spu_prio_array { |
| <------>DECLARE_BITMAP(bitmap, MAX_PRIO); |
| <------>struct list_head runq[MAX_PRIO]; |
| <------>spinlock_t runq_lock; |
| <------>int nr_waiting; |
| }; |
| |
| static unsigned long spu_avenrun[3]; |
| static struct spu_prio_array *spu_prio; |
| static struct task_struct *spusched_task; |
| static struct timer_list spusched_timer; |
| static struct timer_list spuloadavg_timer; |
| |
| |
| |
| |
| #define NORMAL_PRIO 120 |
| |
| |
| |
| |
| |
| #define SPUSCHED_TICK (10) |
| |
| |
| |
| |
| |
| |
| |
| #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) |
| #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) |
| |
| #define SCALE_PRIO(x, prio) \ |
| <------>max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| void spu_set_timeslice(struct spu_context *ctx) |
| { |
| <------>if (ctx->prio < NORMAL_PRIO) |
| <------><------>ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); |
| <------>else |
| <------><------>ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); |
| } |
| |
| |
| |
| |
| void __spu_update_sched_info(struct spu_context *ctx) |
| { |
| <------> |
| <------> * assert that the context is not on the runqueue, so it is safe |
| <------> * to change its scheduling parameters. |
| <------> */ |
| <------>BUG_ON(!list_empty(&ctx->rq)); |
| |
| <------> |
| <------> * 32-Bit assignments are atomic on powerpc, and we don't care about |
| <------> * memory ordering here because retrieving the controlling thread is |
| <------> * per definition racy. |
| <------> */ |
| <------>ctx->tid = current->pid; |
| |
| <------> |
| <------> * We do our own priority calculations, so we normally want |
| <------> * ->static_prio to start with. Unfortunately this field |
| <------> * contains junk for threads with a realtime scheduling |
| <------> * policy so we have to look at ->prio in this case. |
| <------> */ |
| <------>if (rt_prio(current->prio)) |
| <------><------>ctx->prio = current->prio; |
| <------>else |
| <------><------>ctx->prio = current->static_prio; |
| <------>ctx->policy = current->policy; |
| |
| <------> |
| <------> * TO DO: the context may be loaded, so we may need to activate |
| <------> * it again on a different node. But it shouldn't hurt anything |
| <------> * to update its parameters, because we know that the scheduler |
| <------> * is not actively looking at this field, since it is not on the |
| <------> * runqueue. The context will be rescheduled on the proper node |
| <------> * if it is timesliced or preempted. |
| <------> */ |
| <------>cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr); |
| |
| <------> |
| <------>ctx->last_ran = raw_smp_processor_id(); |
| } |
| |
| void spu_update_sched_info(struct spu_context *ctx) |
| { |
| <------>int node; |
| |
| <------>if (ctx->state == SPU_STATE_RUNNABLE) { |
| <------><------>node = ctx->spu->node; |
| |
| <------><------> |
| <------><------> * Take list_mutex to sync with find_victim(). |
| <------><------> */ |
| <------><------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------><------>__spu_update_sched_info(ctx); |
| <------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| <------>} else { |
| <------><------>__spu_update_sched_info(ctx); |
| <------>} |
| } |
| |
| static int __node_allowed(struct spu_context *ctx, int node) |
| { |
| <------>if (nr_cpus_node(node)) { |
| <------><------>const struct cpumask *mask = cpumask_of_node(node); |
| |
| <------><------>if (cpumask_intersects(mask, &ctx->cpus_allowed)) |
| <------><------><------>return 1; |
| <------>} |
| |
| <------>return 0; |
| } |
| |
| static int node_allowed(struct spu_context *ctx, int node) |
| { |
| <------>int rval; |
| |
| <------>spin_lock(&spu_prio->runq_lock); |
| <------>rval = __node_allowed(ctx, node); |
| <------>spin_unlock(&spu_prio->runq_lock); |
| |
| <------>return rval; |
| } |
| |
| void do_notify_spus_active(void) |
| { |
| <------>int node; |
| |
| <------> |
| <------> * Wake up the active spu_contexts. |
| <------> * |
| <------> * When the awakened processes see their "notify_active" flag is set, |
| <------> * they will call spu_switch_notify(). |
| <------> */ |
| <------>for_each_online_node(node) { |
| <------><------>struct spu *spu; |
| |
| <------><------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------><------>list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { |
| <------><------><------>if (spu->alloc_state != SPU_FREE) { |
| <------><------><------><------>struct spu_context *ctx = spu->ctx; |
| <------><------><------><------>set_bit(SPU_SCHED_NOTIFY_ACTIVE, |
| <------><------><------><------><------>&ctx->sched_flags); |
| <------><------><------><------>mb(); |
| <------><------><------><------>wake_up_all(&ctx->stop_wq); |
| <------><------><------>} |
| <------><------>} |
| <------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| <------>} |
| } |
| |
| |
| |
| |
| |
| |
| static void spu_bind_context(struct spu *spu, struct spu_context *ctx) |
| { |
| <------>spu_context_trace(spu_bind_context__enter, ctx, spu); |
| |
| <------>spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); |
| |
| <------>if (ctx->flags & SPU_CREATE_NOSCHED) |
| <------><------>atomic_inc(&cbe_spu_info[spu->node].reserved_spus); |
| |
| <------>ctx->stats.slb_flt_base = spu->stats.slb_flt; |
| <------>ctx->stats.class2_intr_base = spu->stats.class2_intr; |
| |
| <------>spu_associate_mm(spu, ctx->owner); |
| |
| <------>spin_lock_irq(&spu->register_lock); |
| <------>spu->ctx = ctx; |
| <------>spu->flags = 0; |
| <------>ctx->spu = spu; |
| <------>ctx->ops = &spu_hw_ops; |
| <------>spu->pid = current->pid; |
| <------>spu->tgid = current->tgid; |
| <------>spu->ibox_callback = spufs_ibox_callback; |
| <------>spu->wbox_callback = spufs_wbox_callback; |
| <------>spu->stop_callback = spufs_stop_callback; |
| <------>spu->mfc_callback = spufs_mfc_callback; |
| <------>spin_unlock_irq(&spu->register_lock); |
| |
| <------>spu_unmap_mappings(ctx); |
| |
| <------>spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); |
| <------>spu_restore(&ctx->csa, spu); |
| <------>spu->timestamp = jiffies; |
| <------>spu_switch_notify(spu, ctx); |
| <------>ctx->state = SPU_STATE_RUNNABLE; |
| |
| <------>spuctx_switch_state(ctx, SPU_UTIL_USER); |
| } |
| |
| |
| |
| |
| static inline int sched_spu(struct spu *spu) |
| { |
| <------>BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); |
| |
| <------>return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); |
| } |
| |
| static void aff_merge_remaining_ctxs(struct spu_gang *gang) |
| { |
| <------>struct spu_context *ctx; |
| |
| <------>list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { |
| <------><------>if (list_empty(&ctx->aff_list)) |
| <------><------><------>list_add(&ctx->aff_list, &gang->aff_list_head); |
| <------>} |
| <------>gang->aff_flags |= AFF_MERGED; |
| } |
| |
| static void aff_set_offsets(struct spu_gang *gang) |
| { |
| <------>struct spu_context *ctx; |
| <------>int offset; |
| |
| <------>offset = -1; |
| <------>list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, |
| <------><------><------><------><------><------><------><------>aff_list) { |
| <------><------>if (&ctx->aff_list == &gang->aff_list_head) |
| <------><------><------>break; |
| <------><------>ctx->aff_offset = offset--; |
| <------>} |
| |
| <------>offset = 0; |
| <------>list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { |
| <------><------>if (&ctx->aff_list == &gang->aff_list_head) |
| <------><------><------>break; |
| <------><------>ctx->aff_offset = offset++; |
| <------>} |
| |
| <------>gang->aff_flags |= AFF_OFFSETS_SET; |
| } |
| |
| static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, |
| <------><------> int group_size, int lowest_offset) |
| { |
| <------>struct spu *spu; |
| <------>int node, n; |
| |
| <------> |
| <------> * TODO: A better algorithm could be used to find a good spu to be |
| <------> * used as reference location for the ctxs chain. |
| <------> */ |
| <------>node = cpu_to_node(raw_smp_processor_id()); |
| <------>for (n = 0; n < MAX_NUMNODES; n++, node++) { |
| <------><------> |
| <------><------> * "available_spus" counts how many spus are not potentially |
| <------><------> * going to be used by other affinity gangs whose reference |
| <------><------> * context is already in place. Although this code seeks to |
| <------><------> * avoid having affinity gangs with a summed amount of |
| <------><------> * contexts bigger than the amount of spus in the node, |
| <------><------> * this may happen sporadically. In this case, available_spus |
| <------><------> * becomes negative, which is harmless. |
| <------><------> */ |
| <------><------>int available_spus; |
| |
| <------><------>node = (node < MAX_NUMNODES) ? node : 0; |
| <------><------>if (!node_allowed(ctx, node)) |
| <------><------><------>continue; |
| |
| <------><------>available_spus = 0; |
| <------><------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------><------>list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { |
| <------><------><------>if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset |
| <------><------><------><------><------>&& spu->ctx->gang->aff_ref_spu) |
| <------><------><------><------>available_spus -= spu->ctx->gang->contexts; |
| <------><------><------>available_spus++; |
| <------><------>} |
| <------><------>if (available_spus < ctx->gang->contexts) { |
| <------><------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| <------><------><------>continue; |
| <------><------>} |
| |
| <------><------>list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { |
| <------><------><------>if ((!mem_aff || spu->has_mem_affinity) && |
| <------><------><------><------><------><------><------>sched_spu(spu)) { |
| <------><------><------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| <------><------><------><------>return spu; |
| <------><------><------>} |
| <------><------>} |
| <------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| <------>} |
| <------>return NULL; |
| } |
| |
| static void aff_set_ref_point_location(struct spu_gang *gang) |
| { |
| <------>int mem_aff, gs, lowest_offset; |
| <------>struct spu_context *ctx; |
| <------>struct spu *tmp; |
| |
| <------>mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; |
| <------>lowest_offset = 0; |
| <------>gs = 0; |
| |
| <------>list_for_each_entry(tmp, &gang->aff_list_head, aff_list) |
| <------><------>gs++; |
| |
| <------>list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, |
| <------><------><------><------><------><------><------><------>aff_list) { |
| <------><------>if (&ctx->aff_list == &gang->aff_list_head) |
| <------><------><------>break; |
| <------><------>lowest_offset = ctx->aff_offset; |
| <------>} |
| |
| <------>gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, |
| <------><------><------><------><------><------><------>lowest_offset); |
| } |
| |
| static struct spu *ctx_location(struct spu *ref, int offset, int node) |
| { |
| <------>struct spu *spu; |
| |
| <------>spu = NULL; |
| <------>if (offset >= 0) { |
| <------><------>list_for_each_entry(spu, ref->aff_list.prev, aff_list) { |
| <------><------><------>BUG_ON(spu->node != node); |
| <------><------><------>if (offset == 0) |
| <------><------><------><------>break; |
| <------><------><------>if (sched_spu(spu)) |
| <------><------><------><------>offset--; |
| <------><------>} |
| <------>} else { |
| <------><------>list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { |
| <------><------><------>BUG_ON(spu->node != node); |
| <------><------><------>if (offset == 0) |
| <------><------><------><------>break; |
| <------><------><------>if (sched_spu(spu)) |
| <------><------><------><------>offset++; |
| <------><------>} |
| <------>} |
| |
| <------>return spu; |
| } |
| |
| |
| |
| |
| |
| static int has_affinity(struct spu_context *ctx) |
| { |
| <------>struct spu_gang *gang = ctx->gang; |
| |
| <------>if (list_empty(&ctx->aff_list)) |
| <------><------>return 0; |
| |
| <------>if (atomic_read(&ctx->gang->aff_sched_count) == 0) |
| <------><------>ctx->gang->aff_ref_spu = NULL; |
| |
| <------>if (!gang->aff_ref_spu) { |
| <------><------>if (!(gang->aff_flags & AFF_MERGED)) |
| <------><------><------>aff_merge_remaining_ctxs(gang); |
| <------><------>if (!(gang->aff_flags & AFF_OFFSETS_SET)) |
| <------><------><------>aff_set_offsets(gang); |
| <------><------>aff_set_ref_point_location(gang); |
| <------>} |
| |
| <------>return gang->aff_ref_spu != NULL; |
| } |
| |
| |
| |
| |
| |
| |
| static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) |
| { |
| <------>u32 status; |
| |
| <------>spu_context_trace(spu_unbind_context__enter, ctx, spu); |
| |
| <------>spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); |
| |
| if (spu->ctx->flags & SPU_CREATE_NOSCHED) |
| <------><------>atomic_dec(&cbe_spu_info[spu->node].reserved_spus); |
| |
| <------>if (ctx->gang) |
| <------><------> |
| <------><------> * If ctx->gang->aff_sched_count is positive, SPU affinity is |
| <------><------> * being considered in this gang. Using atomic_dec_if_positive |
| <------><------> * allow us to skip an explicit check for affinity in this gang |
| <------><------> */ |
| <------><------>atomic_dec_if_positive(&ctx->gang->aff_sched_count); |
| |
| <------>spu_switch_notify(spu, NULL); |
| <------>spu_unmap_mappings(ctx); |
| <------>spu_save(&ctx->csa, spu); |
| <------>spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); |
| |
| <------>spin_lock_irq(&spu->register_lock); |
| <------>spu->timestamp = jiffies; |
| <------>ctx->state = SPU_STATE_SAVED; |
| <------>spu->ibox_callback = NULL; |
| <------>spu->wbox_callback = NULL; |
| <------>spu->stop_callback = NULL; |
| <------>spu->mfc_callback = NULL; |
| <------>spu->pid = 0; |
| <------>spu->tgid = 0; |
| <------>ctx->ops = &spu_backing_ops; |
| <------>spu->flags = 0; |
| <------>spu->ctx = NULL; |
| <------>spin_unlock_irq(&spu->register_lock); |
| |
| <------>spu_associate_mm(spu, NULL); |
| |
| <------>ctx->stats.slb_flt += |
| <------><------>(spu->stats.slb_flt - ctx->stats.slb_flt_base); |
| <------>ctx->stats.class2_intr += |
| <------><------>(spu->stats.class2_intr - ctx->stats.class2_intr_base); |
| |
| <------> |
| <------>spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); |
| <------>ctx->spu = NULL; |
| |
| <------>if (spu_stopped(ctx, &status)) |
| <------><------>wake_up_all(&ctx->stop_wq); |
| } |
| |
| |
| |
| |
| |
| static void __spu_add_to_rq(struct spu_context *ctx) |
| { |
| <------> |
| <------> * Unfortunately this code path can be called from multiple threads |
| <------> * on behalf of a single context due to the way the problem state |
| <------> * mmap support works. |
| <------> * |
| <------> * Fortunately we need to wake up all these threads at the same time |
| <------> * and can simply skip the runqueue addition for every but the first |
| <------> * thread getting into this codepath. |
| <------> * |
| <------> * It's still quite hacky, and long-term we should proxy all other |
| <------> * threads through the owner thread so that spu_run is in control |
| <------> * of all the scheduling activity for a given context. |
| <------> */ |
| <------>if (list_empty(&ctx->rq)) { |
| <------><------>list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); |
| <------><------>set_bit(ctx->prio, spu_prio->bitmap); |
| <------><------>if (!spu_prio->nr_waiting++) |
| <------><------><------>mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); |
| <------>} |
| } |
| |
| static void spu_add_to_rq(struct spu_context *ctx) |
| { |
| <------>spin_lock(&spu_prio->runq_lock); |
| <------>__spu_add_to_rq(ctx); |
| <------>spin_unlock(&spu_prio->runq_lock); |
| } |
| |
| static void __spu_del_from_rq(struct spu_context *ctx) |
| { |
| <------>int prio = ctx->prio; |
| |
| <------>if (!list_empty(&ctx->rq)) { |
| <------><------>if (!--spu_prio->nr_waiting) |
| <------><------><------>del_timer(&spusched_timer); |
| <------><------>list_del_init(&ctx->rq); |
| |
| <------><------>if (list_empty(&spu_prio->runq[prio])) |
| <------><------><------>clear_bit(prio, spu_prio->bitmap); |
| <------>} |
| } |
| |
| void spu_del_from_rq(struct spu_context *ctx) |
| { |
| <------>spin_lock(&spu_prio->runq_lock); |
| <------>__spu_del_from_rq(ctx); |
| <------>spin_unlock(&spu_prio->runq_lock); |
| } |
| |
| static void spu_prio_wait(struct spu_context *ctx) |
| { |
| <------>DEFINE_WAIT(wait); |
| |
| <------> |
| <------> * The caller must explicitly wait for a context to be loaded |
| <------> * if the nosched flag is set. If NOSCHED is not set, the caller |
| <------> * queues the context and waits for an spu event or error. |
| <------> */ |
| <------>BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); |
| |
| <------>spin_lock(&spu_prio->runq_lock); |
| <------>prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); |
| <------>if (!signal_pending(current)) { |
| <------><------>__spu_add_to_rq(ctx); |
| <------><------>spin_unlock(&spu_prio->runq_lock); |
| <------><------>mutex_unlock(&ctx->state_mutex); |
| <------><------>schedule(); |
| <------><------>mutex_lock(&ctx->state_mutex); |
| <------><------>spin_lock(&spu_prio->runq_lock); |
| <------><------>__spu_del_from_rq(ctx); |
| <------>} |
| <------>spin_unlock(&spu_prio->runq_lock); |
| <------>__set_current_state(TASK_RUNNING); |
| <------>remove_wait_queue(&ctx->stop_wq, &wait); |
| } |
| |
| static struct spu *spu_get_idle(struct spu_context *ctx) |
| { |
| <------>struct spu *spu, *aff_ref_spu; |
| <------>int node, n; |
| |
| <------>spu_context_nospu_trace(spu_get_idle__enter, ctx); |
| |
| <------>if (ctx->gang) { |
| <------><------>mutex_lock(&ctx->gang->aff_mutex); |
| <------><------>if (has_affinity(ctx)) { |
| <------><------><------>aff_ref_spu = ctx->gang->aff_ref_spu; |
| <------><------><------>atomic_inc(&ctx->gang->aff_sched_count); |
| <------><------><------>mutex_unlock(&ctx->gang->aff_mutex); |
| <------><------><------>node = aff_ref_spu->node; |
| |
| <------><------><------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------><------><------>spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); |
| <------><------><------>if (spu && spu->alloc_state == SPU_FREE) |
| <------><------><------><------>goto found; |
| <------><------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| |
| <------><------><------>atomic_dec(&ctx->gang->aff_sched_count); |
| <------><------><------>goto not_found; |
| <------><------>} |
| <------><------>mutex_unlock(&ctx->gang->aff_mutex); |
| <------>} |
| <------>node = cpu_to_node(raw_smp_processor_id()); |
| <------>for (n = 0; n < MAX_NUMNODES; n++, node++) { |
| <------><------>node = (node < MAX_NUMNODES) ? node : 0; |
| <------><------>if (!node_allowed(ctx, node)) |
| <------><------><------>continue; |
| |
| <------><------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------><------>list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { |
| <------><------><------>if (spu->alloc_state == SPU_FREE) |
| <------><------><------><------>goto found; |
| <------><------>} |
| <------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| <------>} |
| |
| not_found: |
| <------>spu_context_nospu_trace(spu_get_idle__not_found, ctx); |
| <------>return NULL; |
| |
| found: |
| <------>spu->alloc_state = SPU_USED; |
| <------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| <------>spu_context_trace(spu_get_idle__found, ctx, spu); |
| <------>spu_init_channels(spu); |
| <------>return spu; |
| } |
| |
| |
| |
| |
| |
| |
| |
| static struct spu *find_victim(struct spu_context *ctx) |
| { |
| <------>struct spu_context *victim = NULL; |
| <------>struct spu *spu; |
| <------>int node, n; |
| |
| <------>spu_context_nospu_trace(spu_find_victim__enter, ctx); |
| |
| <------> |
| <------> * Look for a possible preemption candidate on the local node first. |
| <------> * If there is no candidate look at the other nodes. This isn't |
| <------> * exactly fair, but so far the whole spu scheduler tries to keep |
| <------> * a strong node affinity. We might want to fine-tune this in |
| <------> * the future. |
| <------> */ |
| restart: |
| <------>node = cpu_to_node(raw_smp_processor_id()); |
| <------>for (n = 0; n < MAX_NUMNODES; n++, node++) { |
| <------><------>node = (node < MAX_NUMNODES) ? node : 0; |
| <------><------>if (!node_allowed(ctx, node)) |
| <------><------><------>continue; |
| |
| <------><------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------><------>list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { |
| <------><------><------>struct spu_context *tmp = spu->ctx; |
| |
| <------><------><------>if (tmp && tmp->prio > ctx->prio && |
| <------><------><------> !(tmp->flags & SPU_CREATE_NOSCHED) && |
| <------><------><------> (!victim || tmp->prio > victim->prio)) { |
| <------><------><------><------>victim = spu->ctx; |
| <------><------><------>} |
| <------><------>} |
| <------><------>if (victim) |
| <------><------><------>get_spu_context(victim); |
| <------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| |
| <------><------>if (victim) { |
| <------><------><------> |
| <------><------><------> * This nests ctx->state_mutex, but we always lock |
| <------><------><------> * higher priority contexts before lower priority |
| <------><------><------> * ones, so this is safe until we introduce |
| <------><------><------> * priority inheritance schemes. |
| <------><------><------> * |
| <------><------><------> * XXX if the highest priority context is locked, |
| <------><------><------> * this can loop a long time. Might be better to |
| <------><------><------> * look at another context or give up after X retries. |
| <------><------><------> */ |
| <------><------><------>if (!mutex_trylock(&victim->state_mutex)) { |
| <------><------><------><------>put_spu_context(victim); |
| <------><------><------><------>victim = NULL; |
| <------><------><------><------>goto restart; |
| <------><------><------>} |
| |
| <------><------><------>spu = victim->spu; |
| <------><------><------>if (!spu || victim->prio <= ctx->prio) { |
| <------><------><------><------> |
| <------><------><------><------> * This race can happen because we've dropped |
| <------><------><------><------> * the active list mutex. Not a problem, just |
| <------><------><------><------> * restart the search. |
| <------><------><------><------> */ |
| <------><------><------><------>mutex_unlock(&victim->state_mutex); |
| <------><------><------><------>put_spu_context(victim); |
| <------><------><------><------>victim = NULL; |
| <------><------><------><------>goto restart; |
| <------><------><------>} |
| |
| <------><------><------>spu_context_trace(__spu_deactivate__unload, ctx, spu); |
| |
| <------><------><------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------><------><------>cbe_spu_info[node].nr_active--; |
| <------><------><------>spu_unbind_context(spu, victim); |
| <------><------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| |
| <------><------><------>victim->stats.invol_ctx_switch++; |
| <------><------><------>spu->stats.invol_ctx_switch++; |
| <------><------><------>if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) |
| <------><------><------><------>spu_add_to_rq(victim); |
| |
| <------><------><------>mutex_unlock(&victim->state_mutex); |
| <------><------><------>put_spu_context(victim); |
| |
| <------><------><------>return spu; |
| <------><------>} |
| <------>} |
| |
| <------>return NULL; |
| } |
| |
| static void __spu_schedule(struct spu *spu, struct spu_context *ctx) |
| { |
| <------>int node = spu->node; |
| <------>int success = 0; |
| |
| <------>spu_set_timeslice(ctx); |
| |
| <------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------>if (spu->ctx == NULL) { |
| <------><------>spu_bind_context(spu, ctx); |
| <------><------>cbe_spu_info[node].nr_active++; |
| <------><------>spu->alloc_state = SPU_USED; |
| <------><------>success = 1; |
| <------>} |
| <------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| |
| <------>if (success) |
| <------><------>wake_up_all(&ctx->run_wq); |
| <------>else |
| <------><------>spu_add_to_rq(ctx); |
| } |
| |
| static void spu_schedule(struct spu *spu, struct spu_context *ctx) |
| { |
| <------> |
| <------> from the scheduler thread or from spu_deactivate */ |
| <------>mutex_lock(&ctx->state_mutex); |
| <------>if (ctx->state == SPU_STATE_SAVED) |
| <------><------>__spu_schedule(spu, ctx); |
| <------>spu_release(ctx); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static void spu_unschedule(struct spu *spu, struct spu_context *ctx, |
| <------><------>int free_spu) |
| { |
| <------>int node = spu->node; |
| |
| <------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------>cbe_spu_info[node].nr_active--; |
| <------>if (free_spu) |
| <------><------>spu->alloc_state = SPU_FREE; |
| <------>spu_unbind_context(spu, ctx); |
| <------>ctx->stats.invol_ctx_switch++; |
| <------>spu->stats.invol_ctx_switch++; |
| <------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| int spu_activate(struct spu_context *ctx, unsigned long flags) |
| { |
| <------>struct spu *spu; |
| |
| <------> |
| <------> * If there are multiple threads waiting for a single context |
| <------> * only one actually binds the context while the others will |
| <------> * only be able to acquire the state_mutex once the context |
| <------> * already is in runnable state. |
| <------> */ |
| <------>if (ctx->spu) |
| <------><------>return 0; |
| |
| spu_activate_top: |
| <------>if (signal_pending(current)) |
| <------><------>return -ERESTARTSYS; |
| |
| <------>spu = spu_get_idle(ctx); |
| <------> |
| <------> * If this is a realtime thread we try to get it running by |
| <------> * preempting a lower priority thread. |
| <------> */ |
| <------>if (!spu && rt_prio(ctx->prio)) |
| <------><------>spu = find_victim(ctx); |
| <------>if (spu) { |
| <------><------>unsigned long runcntl; |
| |
| <------><------>runcntl = ctx->ops->runcntl_read(ctx); |
| <------><------>__spu_schedule(spu, ctx); |
| <------><------>if (runcntl & SPU_RUNCNTL_RUNNABLE) |
| <------><------><------>spuctx_switch_state(ctx, SPU_UTIL_USER); |
| |
| <------><------>return 0; |
| <------>} |
| |
| <------>if (ctx->flags & SPU_CREATE_NOSCHED) { |
| <------><------>spu_prio_wait(ctx); |
| <------><------>goto spu_activate_top; |
| <------>} |
| |
| <------>spu_add_to_rq(ctx); |
| |
| <------>return 0; |
| } |
| |
| |
| |
| |
| |
| |
| |
| static struct spu_context *grab_runnable_context(int prio, int node) |
| { |
| <------>struct spu_context *ctx; |
| <------>int best; |
| |
| <------>spin_lock(&spu_prio->runq_lock); |
| <------>best = find_first_bit(spu_prio->bitmap, prio); |
| <------>while (best < prio) { |
| <------><------>struct list_head *rq = &spu_prio->runq[best]; |
| |
| <------><------>list_for_each_entry(ctx, rq, rq) { |
| <------><------><------> |
| <------><------><------>if (__node_allowed(ctx, node)) { |
| <------><------><------><------>__spu_del_from_rq(ctx); |
| <------><------><------><------>goto found; |
| <------><------><------>} |
| <------><------>} |
| <------><------>best++; |
| <------>} |
| <------>ctx = NULL; |
| found: |
| <------>spin_unlock(&spu_prio->runq_lock); |
| <------>return ctx; |
| } |
| |
| static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) |
| { |
| <------>struct spu *spu = ctx->spu; |
| <------>struct spu_context *new = NULL; |
| |
| <------>if (spu) { |
| <------><------>new = grab_runnable_context(max_prio, spu->node); |
| <------><------>if (new || force) { |
| <------><------><------>spu_unschedule(spu, ctx, new == NULL); |
| <------><------><------>if (new) { |
| <------><------><------><------>if (new->flags & SPU_CREATE_NOSCHED) |
| <------><------><------><------><------>wake_up(&new->stop_wq); |
| <------><------><------><------>else { |
| <------><------><------><------><------>spu_release(ctx); |
| <------><------><------><------><------>spu_schedule(spu, new); |
| <------><------><------><------><------> |
| <------><------><------><------><------> interruptible */ |
| <------><------><------><------><------>mutex_lock(&ctx->state_mutex); |
| <------><------><------><------>} |
| <------><------><------>} |
| <------><------>} |
| <------>} |
| |
| <------>return new != NULL; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| void spu_deactivate(struct spu_context *ctx) |
| { |
| <------>spu_context_nospu_trace(spu_deactivate__enter, ctx); |
| <------>__spu_deactivate(ctx, 1, MAX_PRIO); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| void spu_yield(struct spu_context *ctx) |
| { |
| <------>spu_context_nospu_trace(spu_yield__enter, ctx); |
| <------>if (!(ctx->flags & SPU_CREATE_NOSCHED)) { |
| <------><------>mutex_lock(&ctx->state_mutex); |
| <------><------>__spu_deactivate(ctx, 0, MAX_PRIO); |
| <------><------>mutex_unlock(&ctx->state_mutex); |
| <------>} |
| } |
| |
| static noinline void spusched_tick(struct spu_context *ctx) |
| { |
| <------>struct spu_context *new = NULL; |
| <------>struct spu *spu = NULL; |
| |
| <------>if (spu_acquire(ctx)) |
| <------><------>BUG(); |
| |
| <------>if (ctx->state != SPU_STATE_RUNNABLE) |
| <------><------>goto out; |
| <------>if (ctx->flags & SPU_CREATE_NOSCHED) |
| <------><------>goto out; |
| <------>if (ctx->policy == SCHED_FIFO) |
| <------><------>goto out; |
| |
| <------>if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) |
| <------><------>goto out; |
| |
| <------>spu = ctx->spu; |
| |
| <------>spu_context_trace(spusched_tick__preempt, ctx, spu); |
| |
| <------>new = grab_runnable_context(ctx->prio + 1, spu->node); |
| <------>if (new) { |
| <------><------>spu_unschedule(spu, ctx, 0); |
| <------><------>if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) |
| <------><------><------>spu_add_to_rq(ctx); |
| <------>} else { |
| <------><------>spu_context_nospu_trace(spusched_tick__newslice, ctx); |
| <------><------>if (!ctx->time_slice) |
| <------><------><------>ctx->time_slice++; |
| <------>} |
| out: |
| <------>spu_release(ctx); |
| |
| <------>if (new) |
| <------><------>spu_schedule(spu, new); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static unsigned long count_active_contexts(void) |
| { |
| <------>int nr_active = 0, node; |
| |
| <------>for (node = 0; node < MAX_NUMNODES; node++) |
| <------><------>nr_active += cbe_spu_info[node].nr_active; |
| <------>nr_active += spu_prio->nr_waiting; |
| |
| <------>return nr_active; |
| } |
| |
| |
| |
| |
| |
| |
| |
| static void spu_calc_load(void) |
| { |
| <------>unsigned long active_tasks; |
| |
| <------>active_tasks = count_active_contexts() * FIXED_1; |
| <------>spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks); |
| <------>spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks); |
| <------>spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks); |
| } |
| |
| static void spusched_wake(struct timer_list *unused) |
| { |
| <------>mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); |
| <------>wake_up_process(spusched_task); |
| } |
| |
| static void spuloadavg_wake(struct timer_list *unused) |
| { |
| <------>mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); |
| <------>spu_calc_load(); |
| } |
| |
| static int spusched_thread(void *unused) |
| { |
| <------>struct spu *spu; |
| <------>int node; |
| |
| <------>while (!kthread_should_stop()) { |
| <------><------>set_current_state(TASK_INTERRUPTIBLE); |
| <------><------>schedule(); |
| <------><------>for (node = 0; node < MAX_NUMNODES; node++) { |
| <------><------><------>struct mutex *mtx = &cbe_spu_info[node].list_mutex; |
| |
| <------><------><------>mutex_lock(mtx); |
| <------><------><------>list_for_each_entry(spu, &cbe_spu_info[node].spus, |
| <------><------><------><------><------>cbe_list) { |
| <------><------><------><------>struct spu_context *ctx = spu->ctx; |
| |
| <------><------><------><------>if (ctx) { |
| <------><------><------><------><------>get_spu_context(ctx); |
| <------><------><------><------><------>mutex_unlock(mtx); |
| <------><------><------><------><------>spusched_tick(ctx); |
| <------><------><------><------><------>mutex_lock(mtx); |
| <------><------><------><------><------>put_spu_context(ctx); |
| <------><------><------><------>} |
| <------><------><------>} |
| <------><------><------>mutex_unlock(mtx); |
| <------><------>} |
| <------>} |
| |
| <------>return 0; |
| } |
| |
| void spuctx_switch_state(struct spu_context *ctx, |
| <------><------>enum spu_utilization_state new_state) |
| { |
| <------>unsigned long long curtime; |
| <------>signed long long delta; |
| <------>struct spu *spu; |
| <------>enum spu_utilization_state old_state; |
| <------>int node; |
| |
| <------>curtime = ktime_get_ns(); |
| <------>delta = curtime - ctx->stats.tstamp; |
| |
| <------>WARN_ON(!mutex_is_locked(&ctx->state_mutex)); |
| <------>WARN_ON(delta < 0); |
| |
| <------>spu = ctx->spu; |
| <------>old_state = ctx->stats.util_state; |
| <------>ctx->stats.util_state = new_state; |
| <------>ctx->stats.tstamp = curtime; |
| |
| <------> |
| <------> * Update the physical SPU utilization statistics. |
| <------> */ |
| <------>if (spu) { |
| <------><------>ctx->stats.times[old_state] += delta; |
| <------><------>spu->stats.times[old_state] += delta; |
| <------><------>spu->stats.util_state = new_state; |
| <------><------>spu->stats.tstamp = curtime; |
| <------><------>node = spu->node; |
| <------><------>if (old_state == SPU_UTIL_USER) |
| <------><------><------>atomic_dec(&cbe_spu_info[node].busy_spus); |
| <------><------>if (new_state == SPU_UTIL_USER) |
| <------><------><------>atomic_inc(&cbe_spu_info[node].busy_spus); |
| <------>} |
| } |
| |
| static int show_spu_loadavg(struct seq_file *s, void *private) |
| { |
| <------>int a, b, c; |
| |
| <------>a = spu_avenrun[0] + (FIXED_1/200); |
| <------>b = spu_avenrun[1] + (FIXED_1/200); |
| <------>c = spu_avenrun[2] + (FIXED_1/200); |
| |
| <------> |
| <------> * Note that last_pid doesn't really make much sense for the |
| <------> * SPU loadavg (it even seems very odd on the CPU side...), |
| <------> * but we include it here to have a 100% compatible interface. |
| <------> */ |
| <------>seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", |
| <------><------>LOAD_INT(a), LOAD_FRAC(a), |
| <------><------>LOAD_INT(b), LOAD_FRAC(b), |
| <------><------>LOAD_INT(c), LOAD_FRAC(c), |
| <------><------>count_active_contexts(), |
| <------><------>atomic_read(&nr_spu_contexts), |
| <------><------>idr_get_cursor(&task_active_pid_ns(current)->idr) - 1); |
| <------>return 0; |
| }; |
| |
| int __init spu_sched_init(void) |
| { |
| <------>struct proc_dir_entry *entry; |
| <------>int err = -ENOMEM, i; |
| |
| <------>spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); |
| <------>if (!spu_prio) |
| <------><------>goto out; |
| |
| <------>for (i = 0; i < MAX_PRIO; i++) { |
| <------><------>INIT_LIST_HEAD(&spu_prio->runq[i]); |
| <------><------>__clear_bit(i, spu_prio->bitmap); |
| <------>} |
| <------>spin_lock_init(&spu_prio->runq_lock); |
| |
| <------>timer_setup(&spusched_timer, spusched_wake, 0); |
| <------>timer_setup(&spuloadavg_timer, spuloadavg_wake, 0); |
| |
| <------>spusched_task = kthread_run(spusched_thread, NULL, "spusched"); |
| <------>if (IS_ERR(spusched_task)) { |
| <------><------>err = PTR_ERR(spusched_task); |
| <------><------>goto out_free_spu_prio; |
| <------>} |
| |
| <------>mod_timer(&spuloadavg_timer, 0); |
| |
| <------>entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg); |
| <------>if (!entry) |
| <------><------>goto out_stop_kthread; |
| |
| <------>pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", |
| <------><------><------>SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); |
| <------>return 0; |
| |
| out_stop_kthread: |
| <------>kthread_stop(spusched_task); |
| out_free_spu_prio: |
| <------>kfree(spu_prio); |
| out: |
| <------>return err; |
| } |
| |
| void spu_sched_exit(void) |
| { |
| <------>struct spu *spu; |
| <------>int node; |
| |
| <------>remove_proc_entry("spu_loadavg", NULL); |
| |
| <------>del_timer_sync(&spusched_timer); |
| <------>del_timer_sync(&spuloadavg_timer); |
| <------>kthread_stop(spusched_task); |
| |
| <------>for (node = 0; node < MAX_NUMNODES; node++) { |
| <------><------>mutex_lock(&cbe_spu_info[node].list_mutex); |
| <------><------>list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) |
| <------><------><------>if (spu->alloc_state != SPU_FREE) |
| <------><------><------><------>spu->alloc_state = SPU_FREE; |
| <------><------>mutex_unlock(&cbe_spu_info[node].list_mutex); |
| <------>} |
| <------>kfree(spu_prio); |
| } |
| |