Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* pSeries NUMA support
*
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
*/
#define pr_fmt(fmt) "numa: " fmt
#include <linux/threads.h>
#include <linux/memblock.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/export.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/pfn.h>
#include <linux/cpuset.h>
#include <linux/node.h>
#include <linux/stop_machine.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <asm/cputhreads.h>
#include <asm/sparsemem.h>
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/topology.h>
#include <asm/firmware.h>
#include <asm/paca.h>
#include <asm/hvcall.h>
#include <asm/setup.h>
#include <asm/vdso.h>
#include <asm/drmem.h>
static int numa_enabled = 1;
static char *cmdline __initdata;
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
int numa_cpu_lookup_table[NR_CPUS];
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
struct pglist_data *node_data[MAX_NUMNODES];
EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(node_to_cpumask_map);
EXPORT_SYMBOL(node_data);
static int min_common_depth;
static int n_mem_addr_cells, n_mem_size_cells;
static int form1_affinity;
#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
static const __be32 *distance_ref_points;
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
/*
* Allocate node_to_cpumask_map based on number of available nodes
* Requires node_possible_map to be valid.
*
* Note: cpumask_of_node() is not valid until after this is done.
*/
static void __init setup_node_to_cpumask_map(void)
{
<------>unsigned int node;
<------>/* setup nr_node_ids if not done yet */
<------>if (nr_node_ids == MAX_NUMNODES)
<------><------>setup_nr_node_ids();
<------>/* allocate the map */
<------>for_each_node(node)
<------><------>alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
<------>/* cpumask_of_node() will now work */
<------>dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
}
static int __init fake_numa_create_new_node(unsigned long end_pfn,
<------><------><------><------><------><------>unsigned int *nid)
{
<------>unsigned long long mem;
<------>char *p = cmdline;
<------>static unsigned int fake_nid;
<------>static unsigned long long curr_boundary;
<------>/*
<------> * Modify node id, iff we started creating NUMA nodes
<------> * We want to continue from where we left of the last time
<------> */
<------>if (fake_nid)
<------><------>*nid = fake_nid;
<------>/*
<------> * In case there are no more arguments to parse, the
<------> * node_id should be the same as the last fake node id
<------> * (we've handled this above).
<------> */
<------>if (!p)
<------><------>return 0;
<------>mem = memparse(p, &p);
<------>if (!mem)
<------><------>return 0;
<------>if (mem < curr_boundary)
<------><------>return 0;
<------>curr_boundary = mem;
<------>if ((end_pfn << PAGE_SHIFT) > mem) {
<------><------>/*
<------><------> * Skip commas and spaces
<------><------> */
<------><------>while (*p == ',' || *p == ' ' || *p == '\t')
<------><------><------>p++;
<------><------>cmdline = p;
<------><------>fake_nid++;
<------><------>*nid = fake_nid;
<------><------>dbg("created new fake_node with id %d\n", fake_nid);
<------><------>return 1;
<------>}
<------>return 0;
}
static void reset_numa_cpu_lookup_table(void)
{
<------>unsigned int cpu;
<------>for_each_possible_cpu(cpu)
<------><------>numa_cpu_lookup_table[cpu] = -1;
}
static void map_cpu_to_node(int cpu, int node)
{
<------>update_numa_cpu_lookup_table(cpu, node);
<------>dbg("adding cpu %d to node %d\n", cpu, node);
<------>if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
<------><------>cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
}
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
static void unmap_cpu_from_node(unsigned long cpu)
{
<------>int node = numa_cpu_lookup_table[cpu];
<------>dbg("removing cpu %lu from node %d\n", cpu, node);
<------>if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
<------><------>cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
<------>} else {
<------><------>printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
<------><------> cpu, node);
<------>}
}
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
<------>int dist = 0;
<------>int i, index;
<------>for (i = 0; i < distance_ref_points_depth; i++) {
<------><------>index = be32_to_cpu(distance_ref_points[i]);
<------><------>if (cpu1_assoc[index] == cpu2_assoc[index])
<------><------><------>break;
<------><------>dist++;
<------>}
<------>return dist;
}
/* must hold reference to node during call */
static const __be32 *of_get_associativity(struct device_node *dev)
{
<------>return of_get_property(dev, "ibm,associativity", NULL);
}
int __node_distance(int a, int b)
{
<------>int i;
<------>int distance = LOCAL_DISTANCE;
<------>if (!form1_affinity)
<------><------>return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
<------>for (i = 0; i < distance_ref_points_depth; i++) {
<------><------>if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
<------><------><------>break;
<------><------>/* Double the distance for each NUMA level */
<------><------>distance *= 2;
<------>}
<------>return distance;
}
EXPORT_SYMBOL(__node_distance);
static void initialize_distance_lookup_table(int nid,
<------><------>const __be32 *associativity)
{
<------>int i;
<------>if (!form1_affinity)
<------><------>return;
<------>for (i = 0; i < distance_ref_points_depth; i++) {
<------><------>const __be32 *entry;
<------><------>entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
<------><------>distance_lookup_table[nid][i] = of_read_number(entry, 1);
<------>}
}
/*
* Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
* info is found.
*/
static int associativity_to_nid(const __be32 *associativity)
{
<------>int nid = NUMA_NO_NODE;
<------>if (!numa_enabled)
<------><------>goto out;
<------>if (of_read_number(associativity, 1) >= min_common_depth)
<------><------>nid = of_read_number(&associativity[min_common_depth], 1);
<------>/* POWER4 LPAR uses 0xffff as invalid node */
<------>if (nid == 0xffff || nid >= nr_node_ids)
<------><------>nid = NUMA_NO_NODE;
<------>if (nid > 0 &&
<------><------>of_read_number(associativity, 1) >= distance_ref_points_depth) {
<------><------>/*
<------><------> * Skip the length field and send start of associativity array
<------><------> */
<------><------>initialize_distance_lookup_table(nid, associativity + 1);
<------>}
out:
<------>return nid;
}
/* Returns the nid associated with the given device tree node,
* or -1 if not found.
*/
static int of_node_to_nid_single(struct device_node *device)
{
<------>int nid = NUMA_NO_NODE;
<------>const __be32 *tmp;
<------>tmp = of_get_associativity(device);
<------>if (tmp)
<------><------>nid = associativity_to_nid(tmp);
<------>return nid;
}
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
<------>int nid = NUMA_NO_NODE;
<------>of_node_get(device);
<------>while (device) {
<------><------>nid = of_node_to_nid_single(device);
<------><------>if (nid != -1)
<------><------><------>break;
<------><------>device = of_get_next_parent(device);
<------>}
<------>of_node_put(device);
<------>return nid;
}
EXPORT_SYMBOL(of_node_to_nid);
static int __init find_min_common_depth(void)
{
<------>int depth;
<------>struct device_node *root;
<------>if (firmware_has_feature(FW_FEATURE_OPAL))
<------><------>root = of_find_node_by_path("/ibm,opal");
<------>else
<------><------>root = of_find_node_by_path("/rtas");
<------>if (!root)
<------><------>root = of_find_node_by_path("/");
<------>/*
<------> * This property is a set of 32-bit integers, each representing
<------> * an index into the ibm,associativity nodes.
<------> *
<------> * With form 0 affinity the first integer is for an SMP configuration
<------> * (should be all 0's) and the second is for a normal NUMA
<------> * configuration. We have only one level of NUMA.
<------> *
<------> * With form 1 affinity the first integer is the most significant
<------> * NUMA boundary and the following are progressively less significant
<------> * boundaries. There can be more than one level of NUMA.
<------> */
<------>distance_ref_points = of_get_property(root,
<------><------><------><------><------>"ibm,associativity-reference-points",
<------><------><------><------><------>&distance_ref_points_depth);
<------>if (!distance_ref_points) {
<------><------>dbg("NUMA: ibm,associativity-reference-points not found.\n");
<------><------>goto err;
<------>}
<------>distance_ref_points_depth /= sizeof(int);
<------>if (firmware_has_feature(FW_FEATURE_OPAL) ||
<------> firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
<------><------>dbg("Using form 1 affinity\n");
<------><------>form1_affinity = 1;
<------>}
<------>if (form1_affinity) {
<------><------>depth = of_read_number(distance_ref_points, 1);
<------>} else {
<------><------>if (distance_ref_points_depth < 2) {
<------><------><------>printk(KERN_WARNING "NUMA: "
<------><------><------><------>"short ibm,associativity-reference-points\n");
<------><------><------>goto err;
<------><------>}
<------><------>depth = of_read_number(&distance_ref_points[1], 1);
<------>}
<------>/*
<------> * Warn and cap if the hardware supports more than
<------> * MAX_DISTANCE_REF_POINTS domains.
<------> */
<------>if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
<------><------>printk(KERN_WARNING "NUMA: distance array capped at "
<------><------><------>"%d entries\n", MAX_DISTANCE_REF_POINTS);
<------><------>distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
<------>}
<------>of_node_put(root);
<------>return depth;
err:
<------>of_node_put(root);
<------>return -1;
}
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
{
<------>struct device_node *memory = NULL;
<------>memory = of_find_node_by_type(memory, "memory");
<------>if (!memory)
<------><------>panic("numa.c: No memory nodes found!");
<------>*n_addr_cells = of_n_addr_cells(memory);
<------>*n_size_cells = of_n_size_cells(memory);
<------>of_node_put(memory);
}
static unsigned long read_n_cells(int n, const __be32 **buf)
{
<------>unsigned long result = 0;
<------>while (n--) {
<------><------>result = (result << 32) | of_read_number(*buf, 1);
<------><------>(*buf)++;
<------>}
<------>return result;
}
struct assoc_arrays {
<------>u32 n_arrays;
<------>u32 array_sz;
<------>const __be32 *arrays;
};
/*
* Retrieve and validate the list of associativity arrays for drconf
* memory from the ibm,associativity-lookup-arrays property of the
* device tree..
*
* The layout of the ibm,associativity-lookup-arrays property is a number N
* indicating the number of associativity arrays, followed by a number M
* indicating the size of each associativity array, followed by a list
* of N associativity arrays.
*/
static int of_get_assoc_arrays(struct assoc_arrays *aa)
{
<------>struct device_node *memory;
<------>const __be32 *prop;
<------>u32 len;
<------>memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
<------>if (!memory)
<------><------>return -1;
<------>prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
<------>if (!prop || len < 2 * sizeof(unsigned int)) {
<------><------>of_node_put(memory);
<------><------>return -1;
<------>}
<------>aa->n_arrays = of_read_number(prop++, 1);
<------>aa->array_sz = of_read_number(prop++, 1);
<------>of_node_put(memory);
<------>/* Now that we know the number of arrays and size of each array,
<------> * revalidate the size of the property read in.
<------> */
<------>if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
<------><------>return -1;
<------>aa->arrays = prop;
<------>return 0;
}
/*
* This is like of_node_to_nid_single() for memory represented in the
* ibm,dynamic-reconfiguration-memory node.
*/
int of_drconf_to_nid_single(struct drmem_lmb *lmb)
{
<------>struct assoc_arrays aa = { .arrays = NULL };
<------>int default_nid = NUMA_NO_NODE;
<------>int nid = default_nid;
<------>int rc, index;
<------>if ((min_common_depth < 0) || !numa_enabled)
<------><------>return default_nid;
<------>rc = of_get_assoc_arrays(&aa);
<------>if (rc)
<------><------>return default_nid;
<------>if (min_common_depth <= aa.array_sz &&
<------> !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
<------><------>index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
<------><------>nid = of_read_number(&aa.arrays[index], 1);
<------><------>if (nid == 0xffff || nid >= nr_node_ids)
<------><------><------>nid = default_nid;
<------><------>if (nid > 0) {
<------><------><------>index = lmb->aa_index * aa.array_sz;
<------><------><------>initialize_distance_lookup_table(nid,
<------><------><------><------><------><------><------>&aa.arrays[index]);
<------><------>}
<------>}
<------>return nid;
}
#ifdef CONFIG_PPC_SPLPAR
static int vphn_get_nid(long lcpu)
{
<------>__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
<------>long rc, hwid;
<------>/*
<------> * On a shared lpar, device tree will not have node associativity.
<------> * At this time lppaca, or its __old_status field may not be
<------> * updated. Hence kernel cannot detect if its on a shared lpar. So
<------> * request an explicit associativity irrespective of whether the
<------> * lpar is shared or dedicated. Use the device tree property as a
<------> * fallback. cpu_to_phys_id is only valid between
<------> * smp_setup_cpu_maps() and smp_setup_pacas().
<------> */
<------>if (firmware_has_feature(FW_FEATURE_VPHN)) {
<------><------>if (cpu_to_phys_id)
<------><------><------>hwid = cpu_to_phys_id[lcpu];
<------><------>else
<------><------><------>hwid = get_hard_smp_processor_id(lcpu);
<------><------>rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
<------><------>if (rc == H_SUCCESS)
<------><------><------>return associativity_to_nid(associativity);
<------>}
<------>return NUMA_NO_NODE;
}
#else
static int vphn_get_nid(long unused)
{
<------>return NUMA_NO_NODE;
}
#endif /* CONFIG_PPC_SPLPAR */
/*
* Figure out to which domain a cpu belongs and stick it there.
* Return the id of the domain used.
*/
static int numa_setup_cpu(unsigned long lcpu)
{
<------>struct device_node *cpu;
<------>int fcpu = cpu_first_thread_sibling(lcpu);
<------>int nid = NUMA_NO_NODE;
<------>if (!cpu_present(lcpu)) {
<------><------>set_cpu_numa_node(lcpu, first_online_node);
<------><------>return first_online_node;
<------>}
<------>/*
<------> * If a valid cpu-to-node mapping is already available, use it
<------> * directly instead of querying the firmware, since it represents
<------> * the most recent mapping notified to us by the platform (eg: VPHN).
<------> * Since cpu_to_node binding remains the same for all threads in the
<------> * core. If a valid cpu-to-node mapping is already available, for
<------> * the first thread in the core, use it.
<------> */
<------>nid = numa_cpu_lookup_table[fcpu];
<------>if (nid >= 0) {
<------><------>map_cpu_to_node(lcpu, nid);
<------><------>return nid;
<------>}
<------>nid = vphn_get_nid(lcpu);
<------>if (nid != NUMA_NO_NODE)
<------><------>goto out_present;
<------>cpu = of_get_cpu_node(lcpu, NULL);
<------>if (!cpu) {
<------><------>WARN_ON(1);
<------><------>if (cpu_present(lcpu))
<------><------><------>goto out_present;
<------><------>else
<------><------><------>goto out;
<------>}
<------>nid = of_node_to_nid_single(cpu);
<------>of_node_put(cpu);
out_present:
<------>if (nid < 0 || !node_possible(nid))
<------><------>nid = first_online_node;
<------>/*
<------> * Update for the first thread of the core. All threads of a core
<------> * have to be part of the same node. This not only avoids querying
<------> * for every other thread in the core, but always avoids a case
<------> * where virtual node associativity change causes subsequent threads
<------> * of a core to be associated with different nid. However if first
<------> * thread is already online, expect it to have a valid mapping.
<------> */
<------>if (fcpu != lcpu) {
<------><------>WARN_ON(cpu_online(fcpu));
<------><------>map_cpu_to_node(fcpu, nid);
<------>}
<------>map_cpu_to_node(lcpu, nid);
out:
<------>return nid;
}
static void verify_cpu_node_mapping(int cpu, int node)
{
<------>int base, sibling, i;
<------>/* Verify that all the threads in the core belong to the same node */
<------>base = cpu_first_thread_sibling(cpu);
<------>for (i = 0; i < threads_per_core; i++) {
<------><------>sibling = base + i;
<------><------>if (sibling == cpu || cpu_is_offline(sibling))
<------><------><------>continue;
<------><------>if (cpu_to_node(sibling) != node) {
<------><------><------>WARN(1, "CPU thread siblings %d and %d don't belong"
<------><------><------><------>" to the same node!\n", cpu, sibling);
<------><------><------>break;
<------><------>}
<------>}
}
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
<------>int nid;
<------>nid = numa_setup_cpu(cpu);
<------>verify_cpu_node_mapping(cpu, nid);
<------>return 0;
}
static int ppc_numa_cpu_dead(unsigned int cpu)
{
#ifdef CONFIG_HOTPLUG_CPU
<------>unmap_cpu_from_node(cpu);
#endif
<------>return 0;
}
/*
* Check and possibly modify a memory region to enforce the memory limit.
*
* Returns the size the region should have to enforce the memory limit.
* This will either be the original value of size, a truncated value,
* or zero. If the returned value of size is 0 the region should be
* discarded as it lies wholly above the memory limit.
*/
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
<------><------><------><------><------><------> unsigned long size)
{
<------>/*
<------> * We use memblock_end_of_DRAM() in here instead of memory_limit because
<------> * we've already adjusted it for the limit and it takes care of
<------> * having memory holes below the limit. Also, in the case of
<------> * iommu_is_off, memory_limit is not set but is implicitly enforced.
<------> */
<------>if (start + size <= memblock_end_of_DRAM())
<------><------>return size;
<------>if (start >= memblock_end_of_DRAM())
<------><------>return 0;
<------>return memblock_end_of_DRAM() - start;
}
/*
* Reads the counter for a given entry in
* linux,drconf-usable-memory property
*/
static inline int __init read_usm_ranges(const __be32 **usm)
{
<------>/*
<------> * For each lmb in ibm,dynamic-memory a corresponding
<------> * entry in linux,drconf-usable-memory property contains
<------> * a counter followed by that many (base, size) duple.
<------> * read the counter from linux,drconf-usable-memory
<------> */
<------>return read_n_cells(n_mem_size_cells, usm);
}
/*
* Extract NUMA information from the ibm,dynamic-reconfiguration-memory
* node. This assumes n_mem_{addr,size}_cells have been set.
*/
static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
<------><------><------><------><------>const __be32 **usm,
<------><------><------><------><------>void *data)
{
<------>unsigned int ranges, is_kexec_kdump = 0;
<------>unsigned long base, size, sz;
<------>int nid;
<------>/*
<------> * Skip this block if the reserved bit is set in flags (0x80)
<------> * or if the block is not assigned to this partition (0x8)
<------> */
<------>if ((lmb->flags & DRCONF_MEM_RESERVED)
<------> || !(lmb->flags & DRCONF_MEM_ASSIGNED))
<------><------>return 0;
<------>if (*usm)
<------><------>is_kexec_kdump = 1;
<------>base = lmb->base_addr;
<------>size = drmem_lmb_size();
<------>ranges = 1;
<------>if (is_kexec_kdump) {
<------><------>ranges = read_usm_ranges(usm);
<------><------>if (!ranges) /* there are no (base, size) duple */
<------><------><------>return 0;
<------>}
<------>do {
<------><------>if (is_kexec_kdump) {
<------><------><------>base = read_n_cells(n_mem_addr_cells, usm);
<------><------><------>size = read_n_cells(n_mem_size_cells, usm);
<------><------>}
<------><------>nid = of_drconf_to_nid_single(lmb);
<------><------>fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
<------><------><------><------><------> &nid);
<------><------>node_set_online(nid);
<------><------>sz = numa_enforce_memory_limit(base, size);
<------><------>if (sz)
<------><------><------>memblock_set_node(base, sz, &memblock.memory, nid);
<------>} while (--ranges);
<------>return 0;
}
static int __init parse_numa_properties(void)
{
<------>struct device_node *memory;
<------>int default_nid = 0;
<------>unsigned long i;
<------>if (numa_enabled == 0) {
<------><------>printk(KERN_WARNING "NUMA disabled by user\n");
<------><------>return -1;
<------>}
<------>min_common_depth = find_min_common_depth();
<------>if (min_common_depth < 0) {
<------><------>/*
<------><------> * if we fail to parse min_common_depth from device tree
<------><------> * mark the numa disabled, boot with numa disabled.
<------><------> */
<------><------>numa_enabled = false;
<------><------>return min_common_depth;
<------>}
<------>dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
<------>/*
<------> * Even though we connect cpus to numa domains later in SMP
<------> * init, we need to know the node ids now. This is because
<------> * each node to be onlined must have NODE_DATA etc backing it.
<------> */
<------>for_each_present_cpu(i) {
<------><------>struct device_node *cpu;
<------><------>int nid = vphn_get_nid(i);
<------><------>/*
<------><------> * Don't fall back to default_nid yet -- we will plug
<------><------> * cpus into nodes once the memory scan has discovered
<------><------> * the topology.
<------><------> */
<------><------>if (nid == NUMA_NO_NODE) {
<------><------><------>cpu = of_get_cpu_node(i, NULL);
<------><------><------>BUG_ON(!cpu);
<------><------><------>nid = of_node_to_nid_single(cpu);
<------><------><------>of_node_put(cpu);
<------><------>}
<------><------>/* node_set_online() is an UB if 'nid' is negative */
<------><------>if (likely(nid >= 0))
<------><------><------>node_set_online(nid);
<------>}
<------>get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
<------>for_each_node_by_type(memory, "memory") {
<------><------>unsigned long start;
<------><------>unsigned long size;
<------><------>int nid;
<------><------>int ranges;
<------><------>const __be32 *memcell_buf;
<------><------>unsigned int len;
<------><------>memcell_buf = of_get_property(memory,
<------><------><------>"linux,usable-memory", &len);
<------><------>if (!memcell_buf || len <= 0)
<------><------><------>memcell_buf = of_get_property(memory, "reg", &len);
<------><------>if (!memcell_buf || len <= 0)
<------><------><------>continue;
<------><------>/* ranges in cell */
<------><------>ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
new_range:
<------><------>/* these are order-sensitive, and modify the buffer pointer */
<------><------>start = read_n_cells(n_mem_addr_cells, &memcell_buf);
<------><------>size = read_n_cells(n_mem_size_cells, &memcell_buf);
<------><------>/*
<------><------> * Assumption: either all memory nodes or none will
<------><------> * have associativity properties. If none, then
<------><------> * everything goes to default_nid.
<------><------> */
<------><------>nid = of_node_to_nid_single(memory);
<------><------>if (nid < 0)
<------><------><------>nid = default_nid;
<------><------>fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
<------><------>node_set_online(nid);
<------><------>size = numa_enforce_memory_limit(start, size);
<------><------>if (size)
<------><------><------>memblock_set_node(start, size, &memblock.memory, nid);
<------><------>if (--ranges)
<------><------><------>goto new_range;
<------>}
<------>/*
<------> * Now do the same thing for each MEMBLOCK listed in the
<------> * ibm,dynamic-memory property in the
<------> * ibm,dynamic-reconfiguration-memory node.
<------> */
<------>memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
<------>if (memory) {
<------><------>walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
<------><------>of_node_put(memory);
<------>}
<------>return 0;
}
static void __init setup_nonnuma(void)
{
<------>unsigned long top_of_ram = memblock_end_of_DRAM();
<------>unsigned long total_ram = memblock_phys_mem_size();
<------>unsigned long start_pfn, end_pfn;
<------>unsigned int nid = 0;
<------>int i;
<------>printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
<------> top_of_ram, total_ram);
<------>printk(KERN_DEBUG "Memory hole size: %ldMB\n",
<------> (top_of_ram - total_ram) >> 20);
<------>for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
<------><------>fake_numa_create_new_node(end_pfn, &nid);
<------><------>memblock_set_node(PFN_PHYS(start_pfn),
<------><------><------><------> PFN_PHYS(end_pfn - start_pfn),
<------><------><------><------> &memblock.memory, nid);
<------><------>node_set_online(nid);
<------>}
}
void __init dump_numa_cpu_topology(void)
{
<------>unsigned int node;
<------>unsigned int cpu, count;
<------>if (!numa_enabled)
<------><------>return;
<------>for_each_online_node(node) {
<------><------>pr_info("Node %d CPUs:", node);
<------><------>count = 0;
<------><------>/*
<------><------> * If we used a CPU iterator here we would miss printing
<------><------> * the holes in the cpumap.
<------><------> */
<------><------>for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
<------><------><------>if (cpumask_test_cpu(cpu,
<------><------><------><------><------>node_to_cpumask_map[node])) {
<------><------><------><------>if (count == 0)
<------><------><------><------><------>pr_cont(" %u", cpu);
<------><------><------><------>++count;
<------><------><------>} else {
<------><------><------><------>if (count > 1)
<------><------><------><------><------>pr_cont("-%u", cpu - 1);
<------><------><------><------>count = 0;
<------><------><------>}
<------><------>}
<------><------>if (count > 1)
<------><------><------>pr_cont("-%u", nr_cpu_ids - 1);
<------><------>pr_cont("\n");
<------>}
}
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
{
<------>u64 spanned_pages = end_pfn - start_pfn;
<------>const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
<------>u64 nd_pa;
<------>void *nd;
<------>int tnid;
<------>nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
<------>if (!nd_pa)
<------><------>panic("Cannot allocate %zu bytes for node %d data\n",
<------><------> nd_size, nid);
<------>nd = __va(nd_pa);
<------>/* report and initialize */
<------>pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
<------><------>nd_pa, nd_pa + nd_size - 1);
<------>tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
<------>if (tnid != nid)
<------><------>pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
<------>node_data[nid] = nd;
<------>memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
<------>NODE_DATA(nid)->node_id = nid;
<------>NODE_DATA(nid)->node_start_pfn = start_pfn;
<------>NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
static void __init find_possible_nodes(void)
{
<------>struct device_node *rtas;
<------>const __be32 *domains = NULL;
<------>int prop_length, max_nodes;
<------>u32 i;
<------>if (!numa_enabled)
<------><------>return;
<------>rtas = of_find_node_by_path("/rtas");
<------>if (!rtas)
<------><------>return;
<------>/*
<------> * ibm,current-associativity-domains is a fairly recent property. If
<------> * it doesn't exist, then fallback on ibm,max-associativity-domains.
<------> * Current denotes what the platform can support compared to max
<------> * which denotes what the Hypervisor can support.
<------> *
<------> * If the LPAR is migratable, new nodes might be activated after a LPM,
<------> * so we should consider the max number in that case.
<------> */
<------>if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
<------><------>domains = of_get_property(rtas,
<------><------><------><------><------> "ibm,current-associativity-domains",
<------><------><------><------><------> &prop_length);
<------>if (!domains) {
<------><------>domains = of_get_property(rtas, "ibm,max-associativity-domains",
<------><------><------><------><------>&prop_length);
<------><------>if (!domains)
<------><------><------>goto out;
<------>}
<------>max_nodes = of_read_number(&domains[min_common_depth], 1);
<------>pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
<------>for (i = 0; i < max_nodes; i++) {
<------><------>if (!node_possible(i))
<------><------><------>node_set(i, node_possible_map);
<------>}
<------>prop_length /= sizeof(int);
<------>if (prop_length > min_common_depth + 2)
<------><------>coregroup_enabled = 1;
out:
<------>of_node_put(rtas);
}
void __init mem_topology_setup(void)
{
<------>int cpu;
<------>/*
<------> * Linux/mm assumes node 0 to be online at boot. However this is not
<------> * true on PowerPC, where node 0 is similar to any other node, it
<------> * could be cpuless, memoryless node. So force node 0 to be offline
<------> * for now. This will prevent cpuless, memoryless node 0 showing up
<------> * unnecessarily as online. If a node has cpus or memory that need
<------> * to be online, then node will anyway be marked online.
<------> */
<------>node_set_offline(0);
<------>if (parse_numa_properties())
<------><------>setup_nonnuma();
<------>/*
<------> * Modify the set of possible NUMA nodes to reflect information
<------> * available about the set of online nodes, and the set of nodes
<------> * that we expect to make use of for this platform's affinity
<------> * calculations.
<------> */
<------>nodes_and(node_possible_map, node_possible_map, node_online_map);
<------>find_possible_nodes();
<------>setup_node_to_cpumask_map();
<------>reset_numa_cpu_lookup_table();
<------>for_each_possible_cpu(cpu) {
<------><------>/*
<------><------> * Powerpc with CONFIG_NUMA always used to have a node 0,
<------><------> * even if it was memoryless or cpuless. For all cpus that
<------><------> * are possible but not present, cpu_to_node() would point
<------><------> * to node 0. To remove a cpuless, memoryless dummy node,
<------><------> * powerpc need to make sure all possible but not present
<------><------> * cpu_to_node are set to a proper node.
<------><------> */
<------><------>numa_setup_cpu(cpu);
<------>}
}
void __init initmem_init(void)
{
<------>int nid;
<------>max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
<------>max_pfn = max_low_pfn;
<------>memblock_dump_all();
<------>for_each_online_node(nid) {
<------><------>unsigned long start_pfn, end_pfn;
<------><------>get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
<------><------>setup_node_data(nid, start_pfn, end_pfn);
<------>}
<------>sparse_init();
<------>/*
<------> * We need the numa_cpu_lookup_table to be accurate for all CPUs,
<------> * even before we online them, so that we can use cpu_to_{node,mem}
<------> * early in boot, cf. smp_prepare_cpus().
<------> * _nocalls() + manual invocation is used because cpuhp is not yet
<------> * initialized for the boot CPU.
<------> */
<------>cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
<------><------><------><------> ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
}
static int __init early_numa(char *p)
{
<------>if (!p)
<------><------>return 0;
<------>if (strstr(p, "off"))
<------><------>numa_enabled = 0;
<------>if (strstr(p, "debug"))
<------><------>numa_debug = 1;
<------>p = strstr(p, "fake=");
<------>if (p)
<------><------>cmdline = p + strlen("fake=");
<------>return 0;
}
early_param("numa", early_numa);
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Find the node associated with a hot added memory section for
* memory represented in the device tree by the property
* ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
*/
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
{
<------>struct drmem_lmb *lmb;
<------>unsigned long lmb_size;
<------>int nid = NUMA_NO_NODE;
<------>lmb_size = drmem_lmb_size();
<------>for_each_drmem_lmb(lmb) {
<------><------>/* skip this block if it is reserved or not assigned to
<------><------> * this partition */
<------><------>if ((lmb->flags & DRCONF_MEM_RESERVED)
<------><------> || !(lmb->flags & DRCONF_MEM_ASSIGNED))
<------><------><------>continue;
<------><------>if ((scn_addr < lmb->base_addr)
<------><------> || (scn_addr >= (lmb->base_addr + lmb_size)))
<------><------><------>continue;
<------><------>nid = of_drconf_to_nid_single(lmb);
<------><------>break;
<------>}
<------>return nid;
}
/*
* Find the node associated with a hot added memory section for memory
* represented in the device tree as a node (i.e. memory@XXXX) for
* each memblock.
*/
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
<------>struct device_node *memory;
<------>int nid = NUMA_NO_NODE;
<------>for_each_node_by_type(memory, "memory") {
<------><------>unsigned long start, size;
<------><------>int ranges;
<------><------>const __be32 *memcell_buf;
<------><------>unsigned int len;
<------><------>memcell_buf = of_get_property(memory, "reg", &len);
<------><------>if (!memcell_buf || len <= 0)
<------><------><------>continue;
<------><------>/* ranges in cell */
<------><------>ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
<------><------>while (ranges--) {
<------><------><------>start = read_n_cells(n_mem_addr_cells, &memcell_buf);
<------><------><------>size = read_n_cells(n_mem_size_cells, &memcell_buf);
<------><------><------>if ((scn_addr < start) || (scn_addr >= (start + size)))
<------><------><------><------>continue;
<------><------><------>nid = of_node_to_nid_single(memory);
<------><------><------>break;
<------><------>}
<------><------>if (nid >= 0)
<------><------><------>break;
<------>}
<------>of_node_put(memory);
<------>return nid;
}
/*
* Find the node associated with a hot added memory section. Section
* corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
* sections are fully contained within a single MEMBLOCK.
*/
int hot_add_scn_to_nid(unsigned long scn_addr)
{
<------>struct device_node *memory = NULL;
<------>int nid;
<------>if (!numa_enabled)
<------><------>return first_online_node;
<------>memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
<------>if (memory) {
<------><------>nid = hot_add_drconf_scn_to_nid(scn_addr);
<------><------>of_node_put(memory);
<------>} else {
<------><------>nid = hot_add_node_scn_to_nid(scn_addr);
<------>}
<------>if (nid < 0 || !node_possible(nid))
<------><------>nid = first_online_node;
<------>return nid;
}
static u64 hot_add_drconf_memory_max(void)
{
<------>struct device_node *memory = NULL;
<------>struct device_node *dn = NULL;
<------>const __be64 *lrdr = NULL;
<------>dn = of_find_node_by_path("/rtas");
<------>if (dn) {
<------><------>lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
<------><------>of_node_put(dn);
<------><------>if (lrdr)
<------><------><------>return be64_to_cpup(lrdr);
<------>}
<------>memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
<------>if (memory) {
<------><------>of_node_put(memory);
<------><------>return drmem_lmb_memory_max();
<------>}
<------>return 0;
}
/*
* memory_hotplug_max - return max address of memory that may be added
*
* This is currently only used on systems that support drconfig memory
* hotplug.
*/
u64 memory_hotplug_max(void)
{
return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
#endif /* CONFIG_MEMORY_HOTPLUG */
/* Virtual Processor Home Node (VPHN) support */
#ifdef CONFIG_PPC_SPLPAR
static int topology_inited;
/*
* Retrieve the new associativity information for a virtual processor's
* home node.
*/
static long vphn_get_associativity(unsigned long cpu,
<------><------><------><------><------>__be32 *associativity)
{
<------>long rc;
<------>rc = hcall_vphn(get_hard_smp_processor_id(cpu),
<------><------><------><------>VPHN_FLAG_VCPU, associativity);
<------>switch (rc) {
<------>case H_SUCCESS:
<------><------>dbg("VPHN hcall succeeded. Reset polling...\n");
<------><------>goto out;
<------>case H_FUNCTION:
<------><------>pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
<------><------>break;
<------>case H_HARDWARE:
<------><------>pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
<------><------><------>"preventing VPHN. Disabling polling...\n");
<------><------>break;
<------>case H_PARAMETER:
<------><------>pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
<------><------><------>"Disabling polling...\n");
<------><------>break;
<------>default:
<------><------>pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
<------><------><------>, rc);
<------><------>break;
<------>}
out:
<------>return rc;
}
int find_and_online_cpu_nid(int cpu)
{
<------>__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
<------>int new_nid;
<------>/* Use associativity from first thread for all siblings */
<------>if (vphn_get_associativity(cpu, associativity))
<------><------>return cpu_to_node(cpu);
<------>new_nid = associativity_to_nid(associativity);
<------>if (new_nid < 0 || !node_possible(new_nid))
<------><------>new_nid = first_online_node;
<------>if (NODE_DATA(new_nid) == NULL) {
#ifdef CONFIG_MEMORY_HOTPLUG
<------><------>/*
<------><------> * Need to ensure that NODE_DATA is initialized for a node from
<------><------> * available memory (see memblock_alloc_try_nid). If unable to
<------><------> * init the node, then default to nearest node that has memory
<------><------> * installed. Skip onlining a node if the subsystems are not
<------><------> * yet initialized.
<------><------> */
<------><------>if (!topology_inited || try_online_node(new_nid))
<------><------><------>new_nid = first_online_node;
#else
<------><------>/*
<------><------> * Default to using the nearest node that has memory installed.
<------><------> * Otherwise, it would be necessary to patch the kernel MM code
<------><------> * to deal with more memoryless-node error conditions.
<------><------> */
<------><------>new_nid = first_online_node;
#endif
<------>}
<------>pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
<------><------>cpu, new_nid);
<------>return new_nid;
}
int cpu_to_coregroup_id(int cpu)
{
<------>__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
<------>int index;
<------>if (cpu < 0 || cpu > nr_cpu_ids)
<------><------>return -1;
<------>if (!coregroup_enabled)
<------><------>goto out;
<------>if (!firmware_has_feature(FW_FEATURE_VPHN))
<------><------>goto out;
<------>if (vphn_get_associativity(cpu, associativity))
<------><------>goto out;
<------>index = of_read_number(associativity, 1);
<------>if (index > min_common_depth + 1)
<------><------>return of_read_number(&associativity[index - 1], 1);
out:
<------>return cpu_to_core_id(cpu);
}
static int topology_update_init(void)
{
<------>topology_inited = 1;
<------>return 0;
}
device_initcall(topology_update_init);
#endif /* CONFIG_PPC_SPLPAR */