Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/*
* A Remote Heap. Remote means that we don't touch the memory that the
* heap points to. Normal heap implementations use the memory they manage
* to place their list. We cannot do that because the memory we manage may
* have special properties, for example it is uncachable or of different
* endianess.
*
* Author: Pantelis Antoniou <panto@intracom.gr>
*
* 2004 (c) INTRACOM S.A. Greece. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <asm/rheap.h>
/*
* Fixup a list_head, needed when copying lists. If the pointers fall
* between s and e, apply the delta. This assumes that
* sizeof(struct list_head *) == sizeof(unsigned long *).
*/
static inline void fixup(unsigned long s, unsigned long e, int d,
<------><------><------> struct list_head *l)
{
<------>unsigned long *pp;
<------>pp = (unsigned long *)&l->next;
<------>if (*pp >= s && *pp < e)
<------><------>*pp += d;
<------>pp = (unsigned long *)&l->prev;
<------>if (*pp >= s && *pp < e)
<------><------>*pp += d;
}
/* Grow the allocated blocks */
static int grow(rh_info_t * info, int max_blocks)
{
<------>rh_block_t *block, *blk;
<------>int i, new_blocks;
<------>int delta;
<------>unsigned long blks, blke;
<------>if (max_blocks <= info->max_blocks)
<------><------>return -EINVAL;
<------>new_blocks = max_blocks - info->max_blocks;
<------>block = kmalloc_array(max_blocks, sizeof(rh_block_t), GFP_ATOMIC);
<------>if (block == NULL)
<------><------>return -ENOMEM;
<------>if (info->max_blocks > 0) {
<------><------>/* copy old block area */
<------><------>memcpy(block, info->block,
<------><------> sizeof(rh_block_t) * info->max_blocks);
<------><------>delta = (char *)block - (char *)info->block;
<------><------>/* and fixup list pointers */
<------><------>blks = (unsigned long)info->block;
<------><------>blke = (unsigned long)(info->block + info->max_blocks);
<------><------>for (i = 0, blk = block; i < info->max_blocks; i++, blk++)
<------><------><------>fixup(blks, blke, delta, &blk->list);
<------><------>fixup(blks, blke, delta, &info->empty_list);
<------><------>fixup(blks, blke, delta, &info->free_list);
<------><------>fixup(blks, blke, delta, &info->taken_list);
<------><------>/* free the old allocated memory */
<------><------>if ((info->flags & RHIF_STATIC_BLOCK) == 0)
<------><------><------>kfree(info->block);
<------>}
<------>info->block = block;
<------>info->empty_slots += new_blocks;
<------>info->max_blocks = max_blocks;
<------>info->flags &= ~RHIF_STATIC_BLOCK;
<------>/* add all new blocks to the free list */
<------>blk = block + info->max_blocks - new_blocks;
<------>for (i = 0; i < new_blocks; i++, blk++)
<------><------>list_add(&blk->list, &info->empty_list);
<------>return 0;
}
/*
* Assure at least the required amount of empty slots. If this function
* causes a grow in the block area then all pointers kept to the block
* area are invalid!
*/
static int assure_empty(rh_info_t * info, int slots)
{
<------>int max_blocks;
<------>/* This function is not meant to be used to grow uncontrollably */
<------>if (slots >= 4)
<------><------>return -EINVAL;
<------>/* Enough space */
<------>if (info->empty_slots >= slots)
<------><------>return 0;
<------>/* Next 16 sized block */
<------>max_blocks = ((info->max_blocks + slots) + 15) & ~15;
<------>return grow(info, max_blocks);
}
static rh_block_t *get_slot(rh_info_t * info)
{
<------>rh_block_t *blk;
<------>/* If no more free slots, and failure to extend. */
<------>/* XXX: You should have called assure_empty before */
<------>if (info->empty_slots == 0) {
<------><------>printk(KERN_ERR "rh: out of slots; crash is imminent.\n");
<------><------>return NULL;
<------>}
<------>/* Get empty slot to use */
<------>blk = list_entry(info->empty_list.next, rh_block_t, list);
<------>list_del_init(&blk->list);
<------>info->empty_slots--;
<------>/* Initialize */
<------>blk->start = 0;
<------>blk->size = 0;
<------>blk->owner = NULL;
<------>return blk;
}
static inline void release_slot(rh_info_t * info, rh_block_t * blk)
{
<------>list_add(&blk->list, &info->empty_list);
<------>info->empty_slots++;
}
static void attach_free_block(rh_info_t * info, rh_block_t * blkn)
{
<------>rh_block_t *blk;
<------>rh_block_t *before;
<------>rh_block_t *after;
<------>rh_block_t *next;
<------>int size;
<------>unsigned long s, e, bs, be;
<------>struct list_head *l;
<------>/* We assume that they are aligned properly */
<------>size = blkn->size;
<------>s = blkn->start;
<------>e = s + size;
<------>/* Find the blocks immediately before and after the given one
<------> * (if any) */
<------>before = NULL;
<------>after = NULL;
<------>next = NULL;
<------>list_for_each(l, &info->free_list) {
<------><------>blk = list_entry(l, rh_block_t, list);
<------><------>bs = blk->start;
<------><------>be = bs + blk->size;
<------><------>if (next == NULL && s >= bs)
<------><------><------>next = blk;
<------><------>if (be == s)
<------><------><------>before = blk;
<------><------>if (e == bs)
<------><------><------>after = blk;
<------><------>/* If both are not null, break now */
<------><------>if (before != NULL && after != NULL)
<------><------><------>break;
<------>}
<------>/* Now check if they are really adjacent */
<------>if (before && s != (before->start + before->size))
<------><------>before = NULL;
<------>if (after && e != after->start)
<------><------>after = NULL;
<------>/* No coalescing; list insert and return */
<------>if (before == NULL && after == NULL) {
<------><------>if (next != NULL)
<------><------><------>list_add(&blkn->list, &next->list);
<------><------>else
<------><------><------>list_add(&blkn->list, &info->free_list);
<------><------>return;
<------>}
<------>/* We don't need it anymore */
<------>release_slot(info, blkn);
<------>/* Grow the before block */
<------>if (before != NULL && after == NULL) {
<------><------>before->size += size;
<------><------>return;
<------>}
<------>/* Grow the after block backwards */
<------>if (before == NULL && after != NULL) {
<------><------>after->start -= size;
<------><------>after->size += size;
<------><------>return;
<------>}
<------>/* Grow the before block, and release the after block */
<------>before->size += size + after->size;
<------>list_del(&after->list);
<------>release_slot(info, after);
}
static void attach_taken_block(rh_info_t * info, rh_block_t * blkn)
{
<------>rh_block_t *blk;
<------>struct list_head *l;
<------>/* Find the block immediately before the given one (if any) */
<------>list_for_each(l, &info->taken_list) {
<------><------>blk = list_entry(l, rh_block_t, list);
<------><------>if (blk->start > blkn->start) {
<------><------><------>list_add_tail(&blkn->list, &blk->list);
<------><------><------>return;
<------><------>}
<------>}
<------>list_add_tail(&blkn->list, &info->taken_list);
}
/*
* Create a remote heap dynamically. Note that no memory for the blocks
* are allocated. It will upon the first allocation
*/
rh_info_t *rh_create(unsigned int alignment)
{
<------>rh_info_t *info;
<------>/* Alignment must be a power of two */
<------>if ((alignment & (alignment - 1)) != 0)
<------><------>return ERR_PTR(-EINVAL);
<------>info = kmalloc(sizeof(*info), GFP_ATOMIC);
<------>if (info == NULL)
<------><------>return ERR_PTR(-ENOMEM);
<------>info->alignment = alignment;
<------>/* Initially everything as empty */
<------>info->block = NULL;
<------>info->max_blocks = 0;
<------>info->empty_slots = 0;
<------>info->flags = 0;
<------>INIT_LIST_HEAD(&info->empty_list);
<------>INIT_LIST_HEAD(&info->free_list);
<------>INIT_LIST_HEAD(&info->taken_list);
<------>return info;
}
EXPORT_SYMBOL_GPL(rh_create);
/*
* Destroy a dynamically created remote heap. Deallocate only if the areas
* are not static
*/
void rh_destroy(rh_info_t * info)
{
<------>if ((info->flags & RHIF_STATIC_BLOCK) == 0)
<------><------>kfree(info->block);
<------>if ((info->flags & RHIF_STATIC_INFO) == 0)
<------><------>kfree(info);
}
EXPORT_SYMBOL_GPL(rh_destroy);
/*
* Initialize in place a remote heap info block. This is needed to support
* operation very early in the startup of the kernel, when it is not yet safe
* to call kmalloc.
*/
void rh_init(rh_info_t * info, unsigned int alignment, int max_blocks,
<------> rh_block_t * block)
{
<------>int i;
<------>rh_block_t *blk;
<------>/* Alignment must be a power of two */
<------>if ((alignment & (alignment - 1)) != 0)
<------><------>return;
<------>info->alignment = alignment;
<------>/* Initially everything as empty */
<------>info->block = block;
<------>info->max_blocks = max_blocks;
<------>info->empty_slots = max_blocks;
<------>info->flags = RHIF_STATIC_INFO | RHIF_STATIC_BLOCK;
<------>INIT_LIST_HEAD(&info->empty_list);
<------>INIT_LIST_HEAD(&info->free_list);
<------>INIT_LIST_HEAD(&info->taken_list);
<------>/* Add all new blocks to the free list */
<------>for (i = 0, blk = block; i < max_blocks; i++, blk++)
<------><------>list_add(&blk->list, &info->empty_list);
}
EXPORT_SYMBOL_GPL(rh_init);
/* Attach a free memory region, coalesces regions if adjacent */
int rh_attach_region(rh_info_t * info, unsigned long start, int size)
{
<------>rh_block_t *blk;
<------>unsigned long s, e, m;
<------>int r;
<------>/* The region must be aligned */
<------>s = start;
<------>e = s + size;
<------>m = info->alignment - 1;
<------>/* Round start up */
<------>s = (s + m) & ~m;
<------>/* Round end down */
<------>e = e & ~m;
<------>if (IS_ERR_VALUE(e) || (e < s))
<------><------>return -ERANGE;
<------>/* Take final values */
<------>start = s;
<------>size = e - s;
<------>/* Grow the blocks, if needed */
<------>r = assure_empty(info, 1);
<------>if (r < 0)
<------><------>return r;
<------>blk = get_slot(info);
<------>blk->start = start;
<------>blk->size = size;
<------>blk->owner = NULL;
<------>attach_free_block(info, blk);
<------>return 0;
}
EXPORT_SYMBOL_GPL(rh_attach_region);
/* Detatch given address range, splits free block if needed. */
unsigned long rh_detach_region(rh_info_t * info, unsigned long start, int size)
{
<------>struct list_head *l;
<------>rh_block_t *blk, *newblk;
<------>unsigned long s, e, m, bs, be;
<------>/* Validate size */
<------>if (size <= 0)
<------><------>return (unsigned long) -EINVAL;
<------>/* The region must be aligned */
<------>s = start;
<------>e = s + size;
<------>m = info->alignment - 1;
<------>/* Round start up */
<------>s = (s + m) & ~m;
<------>/* Round end down */
<------>e = e & ~m;
<------>if (assure_empty(info, 1) < 0)
<------><------>return (unsigned long) -ENOMEM;
<------>blk = NULL;
<------>list_for_each(l, &info->free_list) {
<------><------>blk = list_entry(l, rh_block_t, list);
<------><------>/* The range must lie entirely inside one free block */
<------><------>bs = blk->start;
<------><------>be = blk->start + blk->size;
<------><------>if (s >= bs && e <= be)
<------><------><------>break;
<------><------>blk = NULL;
<------>}
<------>if (blk == NULL)
<------><------>return (unsigned long) -ENOMEM;
<------>/* Perfect fit */
<------>if (bs == s && be == e) {
<------><------>/* Delete from free list, release slot */
<------><------>list_del(&blk->list);
<------><------>release_slot(info, blk);
<------><------>return s;
<------>}
<------>/* blk still in free list, with updated start and/or size */
<------>if (bs == s || be == e) {
<------><------>if (bs == s)
<------><------><------>blk->start += size;
<------><------>blk->size -= size;
<------>} else {
<------><------>/* The front free fragment */
<------><------>blk->size = s - bs;
<------><------>/* the back free fragment */
<------><------>newblk = get_slot(info);
<------><------>newblk->start = e;
<------><------>newblk->size = be - e;
<------><------>list_add(&newblk->list, &blk->list);
<------>}
<------>return s;
}
EXPORT_SYMBOL_GPL(rh_detach_region);
/* Allocate a block of memory at the specified alignment. The value returned
* is an offset into the buffer initialized by rh_init(), or a negative number
* if there is an error.
*/
unsigned long rh_alloc_align(rh_info_t * info, int size, int alignment, const char *owner)
{
<------>struct list_head *l;
<------>rh_block_t *blk;
<------>rh_block_t *newblk;
<------>unsigned long start, sp_size;
<------>/* Validate size, and alignment must be power of two */
<------>if (size <= 0 || (alignment & (alignment - 1)) != 0)
<------><------>return (unsigned long) -EINVAL;
<------>/* Align to configured alignment */
<------>size = (size + (info->alignment - 1)) & ~(info->alignment - 1);
<------>if (assure_empty(info, 2) < 0)
<------><------>return (unsigned long) -ENOMEM;
<------>blk = NULL;
<------>list_for_each(l, &info->free_list) {
<------><------>blk = list_entry(l, rh_block_t, list);
<------><------>if (size <= blk->size) {
<------><------><------>start = (blk->start + alignment - 1) & ~(alignment - 1);
<------><------><------>if (start + size <= blk->start + blk->size)
<------><------><------><------>break;
<------><------>}
<------><------>blk = NULL;
<------>}
<------>if (blk == NULL)
<------><------>return (unsigned long) -ENOMEM;
<------>/* Just fits */
<------>if (blk->size == size) {
<------><------>/* Move from free list to taken list */
<------><------>list_del(&blk->list);
<------><------>newblk = blk;
<------>} else {
<------><------>/* Fragment caused, split if needed */
<------><------>/* Create block for fragment in the beginning */
<------><------>sp_size = start - blk->start;
<------><------>if (sp_size) {
<------><------><------>rh_block_t *spblk;
<------><------><------>spblk = get_slot(info);
<------><------><------>spblk->start = blk->start;
<------><------><------>spblk->size = sp_size;
<------><------><------>/* add before the blk */
<------><------><------>list_add(&spblk->list, blk->list.prev);
<------><------>}
<------><------>newblk = get_slot(info);
<------><------>newblk->start = start;
<------><------>newblk->size = size;
<------><------>/* blk still in free list, with updated start and size
<------><------> * for fragment in the end */
<------><------>blk->start = start + size;
<------><------>blk->size -= sp_size + size;
<------><------>/* No fragment in the end, remove blk */
<------><------>if (blk->size == 0) {
<------><------><------>list_del(&blk->list);
<------><------><------>release_slot(info, blk);
<------><------>}
<------>}
<------>newblk->owner = owner;
<------>attach_taken_block(info, newblk);
<------>return start;
}
EXPORT_SYMBOL_GPL(rh_alloc_align);
/* Allocate a block of memory at the default alignment. The value returned is
* an offset into the buffer initialized by rh_init(), or a negative number if
* there is an error.
*/
unsigned long rh_alloc(rh_info_t * info, int size, const char *owner)
{
<------>return rh_alloc_align(info, size, info->alignment, owner);
}
EXPORT_SYMBOL_GPL(rh_alloc);
/* Allocate a block of memory at the given offset, rounded up to the default
* alignment. The value returned is an offset into the buffer initialized by
* rh_init(), or a negative number if there is an error.
*/
unsigned long rh_alloc_fixed(rh_info_t * info, unsigned long start, int size, const char *owner)
{
<------>struct list_head *l;
<------>rh_block_t *blk, *newblk1, *newblk2;
<------>unsigned long s, e, m, bs = 0, be = 0;
<------>/* Validate size */
<------>if (size <= 0)
<------><------>return (unsigned long) -EINVAL;
<------>/* The region must be aligned */
<------>s = start;
<------>e = s + size;
<------>m = info->alignment - 1;
<------>/* Round start up */
<------>s = (s + m) & ~m;
<------>/* Round end down */
<------>e = e & ~m;
<------>if (assure_empty(info, 2) < 0)
<------><------>return (unsigned long) -ENOMEM;
<------>blk = NULL;
<------>list_for_each(l, &info->free_list) {
<------><------>blk = list_entry(l, rh_block_t, list);
<------><------>/* The range must lie entirely inside one free block */
<------><------>bs = blk->start;
<------><------>be = blk->start + blk->size;
<------><------>if (s >= bs && e <= be)
<------><------><------>break;
<------><------>blk = NULL;
<------>}
<------>if (blk == NULL)
<------><------>return (unsigned long) -ENOMEM;
<------>/* Perfect fit */
<------>if (bs == s && be == e) {
<------><------>/* Move from free list to taken list */
<------><------>list_del(&blk->list);
<------><------>blk->owner = owner;
<------><------>start = blk->start;
<------><------>attach_taken_block(info, blk);
<------><------>return start;
<------>}
<------>/* blk still in free list, with updated start and/or size */
<------>if (bs == s || be == e) {
<------><------>if (bs == s)
<------><------><------>blk->start += size;
<------><------>blk->size -= size;
<------>} else {
<------><------>/* The front free fragment */
<------><------>blk->size = s - bs;
<------><------>/* The back free fragment */
<------><------>newblk2 = get_slot(info);
<------><------>newblk2->start = e;
<------><------>newblk2->size = be - e;
<------><------>list_add(&newblk2->list, &blk->list);
<------>}
<------>newblk1 = get_slot(info);
<------>newblk1->start = s;
<------>newblk1->size = e - s;
<------>newblk1->owner = owner;
<------>start = newblk1->start;
<------>attach_taken_block(info, newblk1);
<------>return start;
}
EXPORT_SYMBOL_GPL(rh_alloc_fixed);
/* Deallocate the memory previously allocated by one of the rh_alloc functions.
* The return value is the size of the deallocated block, or a negative number
* if there is an error.
*/
int rh_free(rh_info_t * info, unsigned long start)
{
<------>rh_block_t *blk, *blk2;
<------>struct list_head *l;
<------>int size;
<------>/* Linear search for block */
<------>blk = NULL;
<------>list_for_each(l, &info->taken_list) {
<------><------>blk2 = list_entry(l, rh_block_t, list);
<------><------>if (start < blk2->start)
<------><------><------>break;
<------><------>blk = blk2;
<------>}
<------>if (blk == NULL || start > (blk->start + blk->size))
<------><------>return -EINVAL;
<------>/* Remove from taken list */
<------>list_del(&blk->list);
<------>/* Get size of freed block */
<------>size = blk->size;
<------>attach_free_block(info, blk);
<------>return size;
}
EXPORT_SYMBOL_GPL(rh_free);
int rh_get_stats(rh_info_t * info, int what, int max_stats, rh_stats_t * stats)
{
<------>rh_block_t *blk;
<------>struct list_head *l;
<------>struct list_head *h;
<------>int nr;
<------>switch (what) {
<------>case RHGS_FREE:
<------><------>h = &info->free_list;
<------><------>break;
<------>case RHGS_TAKEN:
<------><------>h = &info->taken_list;
<------><------>break;
<------>default:
<------><------>return -EINVAL;
<------>}
<------>/* Linear search for block */
<------>nr = 0;
<------>list_for_each(l, h) {
<------><------>blk = list_entry(l, rh_block_t, list);
<------><------>if (stats != NULL && nr < max_stats) {
<------><------><------>stats->start = blk->start;
<------><------><------>stats->size = blk->size;
<------><------><------>stats->owner = blk->owner;
<------><------><------>stats++;
<------><------>}
<------><------>nr++;
<------>}
<------>return nr;
}
EXPORT_SYMBOL_GPL(rh_get_stats);
int rh_set_owner(rh_info_t * info, unsigned long start, const char *owner)
{
<------>rh_block_t *blk, *blk2;
<------>struct list_head *l;
<------>int size;
<------>/* Linear search for block */
<------>blk = NULL;
<------>list_for_each(l, &info->taken_list) {
<------><------>blk2 = list_entry(l, rh_block_t, list);
<------><------>if (start < blk2->start)
<------><------><------>break;
<------><------>blk = blk2;
<------>}
<------>if (blk == NULL || start > (blk->start + blk->size))
<------><------>return -EINVAL;
<------>blk->owner = owner;
<------>size = blk->size;
<------>return size;
}
EXPORT_SYMBOL_GPL(rh_set_owner);
void rh_dump(rh_info_t * info)
{
<------>static rh_stats_t st[32]; /* XXX maximum 32 blocks */
<------>int maxnr;
<------>int i, nr;
<------>maxnr = ARRAY_SIZE(st);
<------>printk(KERN_INFO
<------> "info @0x%p (%d slots empty / %d max)\n",
<------> info, info->empty_slots, info->max_blocks);
<------>printk(KERN_INFO " Free:\n");
<------>nr = rh_get_stats(info, RHGS_FREE, maxnr, st);
<------>if (nr > maxnr)
<------><------>nr = maxnr;
<------>for (i = 0; i < nr; i++)
<------><------>printk(KERN_INFO
<------><------> " 0x%lx-0x%lx (%u)\n",
<------><------> st[i].start, st[i].start + st[i].size,
<------><------> st[i].size);
<------>printk(KERN_INFO "\n");
<------>printk(KERN_INFO " Taken:\n");
<------>nr = rh_get_stats(info, RHGS_TAKEN, maxnr, st);
<------>if (nr > maxnr)
<------><------>nr = maxnr;
<------>for (i = 0; i < nr; i++)
<------><------>printk(KERN_INFO
<------><------> " 0x%lx-0x%lx (%u) %s\n",
<------><------> st[i].start, st[i].start + st[i].size,
<------><------> st[i].size, st[i].owner != NULL ? st[i].owner : "");
<------>printk(KERN_INFO "\n");
}
EXPORT_SYMBOL_GPL(rh_dump);
void rh_dump_blk(rh_info_t * info, rh_block_t * blk)
{
<------>printk(KERN_INFO
<------> "blk @0x%p: 0x%lx-0x%lx (%u)\n",
<------> blk, blk->start, blk->start + blk->size, blk->size);
}
EXPORT_SYMBOL_GPL(rh_dump_blk);