Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * SMP support for ppc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * deal of code from the sparc and intel versions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #undef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/sched/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/sched/task_stack.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/sched/topology.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/cache.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/notifier.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <linux/topology.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include <linux/profile.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <linux/processor.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/random.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/stackprotector.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/pgtable.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #include <asm/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #include <linux/atomic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include <asm/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include <asm/hw_irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #include <asm/kvm_ppc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #include <asm/dbell.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #include <asm/page.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #include <asm/prom.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #include <asm/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #include <asm/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #include <asm/machdep.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) #include <asm/cputhreads.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #include <asm/cputable.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #include <asm/mpic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #include <asm/vdso_datapage.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #ifdef CONFIG_PPC64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) #include <asm/paca.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) #include <asm/vdso.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) #include <asm/debug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #include <asm/kexec.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #include <asm/asm-prototypes.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) #include <asm/cpu_has_feature.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #include <asm/ftrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #include <asm/kup.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) #include <asm/fadump.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) #include <asm/udbg.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #define DBG(fmt...) udbg_printf(fmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) #define DBG(fmt...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) /* State of each CPU during hotplug phases */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) static DEFINE_PER_CPU(int, cpu_state) = { 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) struct task_struct *secondary_current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) bool has_big_cores;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) bool coregroup_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) EXPORT_PER_CPU_SYMBOL(cpu_core_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) EXPORT_SYMBOL_GPL(has_big_cores);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #ifdef CONFIG_SCHED_SMT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 	smt_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 	cache_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 	mc_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	die_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) #define MAX_THREAD_LIST_SIZE	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) #define THREAD_GROUP_SHARE_L1   1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) struct thread_groups {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	unsigned int property;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	unsigned int nr_groups;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	unsigned int threads_per_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111)  * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112)  * the set its siblings that share the L1-cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) /* SMP operations for this machine */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) struct smp_ops_t *smp_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) /* Can't be static due to PowerMac hackery */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) volatile unsigned int cpu_callin_map[NR_CPUS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) int smt_enabled_at_boot = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125)  * Returns 1 if the specified cpu should be brought up during boot.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126)  * Used to inhibit booting threads if they've been disabled or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127)  * limited on the command line
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) int smp_generic_cpu_bootable(unsigned int nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	/* Special case - we inhibit secondary thread startup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	 * during boot if the user requests it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 		if (smt_enabled_at_boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) #ifdef CONFIG_PPC64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) int smp_generic_kick_cpu(int nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	if (nr < 0 || nr >= nr_cpu_ids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 	 * The processor is currently spinning, waiting for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 	 * cpu_start field to become non-zero After we set cpu_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 	 * the processor will continue on to secondary_start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	if (!paca_ptrs[nr]->cpu_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 		paca_ptrs[nr]->cpu_start = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 		smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	 * Ok it's not there, so it might be soft-unplugged, let's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 	 * try to bring it back
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	generic_set_cpu_up(nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 	smp_send_reschedule(nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) #endif /* CONFIG_HOTPLUG_CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) #endif /* CONFIG_PPC64 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) static irqreturn_t call_function_action(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	generic_smp_call_function_interrupt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) static irqreturn_t reschedule_action(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 	scheduler_ipi();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 	timer_broadcast_interrupt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) #ifdef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) static irqreturn_t nmi_ipi_action(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 	smp_handle_nmi_ipi(get_irq_regs());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) static irq_handler_t smp_ipi_action[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	[PPC_MSG_RESCHEDULE] = reschedule_action,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) #ifdef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217)  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218)  * than going through the call function infrastructure, and strongly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219)  * serialized, so it is more appropriate for debugging.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) const char *smp_ipi_name[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) #ifdef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	[PPC_MSG_NMI_IPI] = "nmi ipi",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) /* optional function to request ipi, for controllers with >= 4 ipis */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) int smp_request_message_ipi(int virq, int msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) #ifndef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	if (msg == PPC_MSG_NMI_IPI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	err = request_irq(virq, smp_ipi_action[msg],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 			  smp_ipi_name[msg], NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 		virq, smp_ipi_name[msg], err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) #ifdef CONFIG_PPC_SMP_MUXED_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) struct cpu_messages {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	long messages;			/* current messages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) void smp_muxed_ipi_set_message(int cpu, int msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 	char *message = (char *)&info->messages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	 * Order previous accesses before accesses in the IPI handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	message[msg] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) void smp_muxed_ipi_message_pass(int cpu, int msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	smp_muxed_ipi_set_message(cpu, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	 * cause_ipi functions are required to include a full barrier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	 * before doing whatever causes the IPI.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	smp_ops->cause_ipi(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) #ifdef __BIG_ENDIAN__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) #define IPI_MESSAGE(A) (1uL << (8 * (A)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) irqreturn_t smp_ipi_demux(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 	mb();	/* order any irq clear */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	return smp_ipi_demux_relaxed();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) /* sync-free variant. Callers should ensure synchronization */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) irqreturn_t smp_ipi_demux_relaxed(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	struct cpu_messages *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	unsigned long all;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 	info = this_cpu_ptr(&ipi_message);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 		all = xchg(&info->messages, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 		 * before PPC_MSG_CALL_FUNCTION messages because when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 		 * a VM is destroyed, we call kick_all_cpus_sync()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 		 * messages have completed before we free any VCPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 			kvmppc_xics_ipi_action();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 			generic_smp_call_function_interrupt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 			scheduler_ipi();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 			timer_broadcast_interrupt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) #ifdef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 			nmi_ipi_action(0, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	} while (info->messages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) #endif /* CONFIG_PPC_SMP_MUXED_IPI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) static inline void do_message_pass(int cpu, int msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	if (smp_ops->message_pass)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 		smp_ops->message_pass(cpu, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) #ifdef CONFIG_PPC_SMP_MUXED_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 		smp_muxed_ipi_message_pass(cpu, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) void smp_send_reschedule(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	if (likely(smp_ops))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) EXPORT_SYMBOL_GPL(smp_send_reschedule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) void arch_send_call_function_single_ipi(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) void arch_send_call_function_ipi_mask(const struct cpumask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	for_each_cpu(cpu, mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) #ifdef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366)  * "NMI IPI" system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368)  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369)  * a running system. They can be used for crash, debug, halt/reboot, etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371)  * The IPI call waits with interrupts disabled until all targets enter the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372)  * NMI handler, then returns. Subsequent IPIs can be issued before targets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373)  * have returned from their handlers, so there is no guarantee about
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374)  * concurrency or re-entrancy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376)  * A new NMI can be issued before all targets exit the handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378)  * The IPI call may time out without all targets entering the NMI handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379)  * In that case, there is some logic to recover (and ignore subsequent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380)  * NMI interrupts that may eventually be raised), but the platform interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381)  * handler may not be able to distinguish this from other exception causes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382)  * which may cause a crash.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) static struct cpumask nmi_ipi_pending_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) static bool nmi_ipi_busy = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) static void nmi_ipi_lock_start(unsigned long *flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	raw_local_irq_save(*flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	hard_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 		raw_local_irq_restore(*flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 		raw_local_irq_save(*flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 		hard_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) static void nmi_ipi_lock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) static void nmi_ipi_unlock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	atomic_set(&__nmi_ipi_lock, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) static void nmi_ipi_unlock_end(unsigned long *flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	nmi_ipi_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	raw_local_irq_restore(*flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422)  * Platform NMI handler calls this to ack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) int smp_handle_nmi_ipi(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	void (*fn)(struct pt_regs *) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	int me = raw_smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 	 * Unexpected NMIs are possible here because the interrupt may not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	 * be able to distinguish NMI IPIs from other types of NMIs, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	 * because the caller may have timed out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	nmi_ipi_lock_start(&flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 		fn = READ_ONCE(nmi_ipi_function);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 		WARN_ON_ONCE(!fn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 		ret = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	nmi_ipi_unlock_end(&flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	if (fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		fn(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) static void do_smp_send_nmi_ipi(int cpu, bool safe)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	if (cpu >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 		int c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 		for_each_online_cpu(c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 			if (c == raw_smp_processor_id())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 			do_message_pass(c, PPC_MSG_NMI_IPI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470)  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471)  * - fn is the target callback function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472)  * - delay_us > 0 is the delay before giving up waiting for targets to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473)  *   begin executing the handler, == 0 specifies indefinite delay.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 				u64 delay_us, bool safe)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 	int me = raw_smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	int ret = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	BUG_ON(cpu == me);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	if (unlikely(!smp_ops))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 	nmi_ipi_lock_start(&flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 	while (nmi_ipi_busy) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 		nmi_ipi_unlock_end(&flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 		spin_until_cond(!nmi_ipi_busy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 		nmi_ipi_lock_start(&flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	nmi_ipi_busy = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	nmi_ipi_function = fn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 	if (cpu < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 		/* ALL_OTHERS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	nmi_ipi_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	/* Interrupts remain hard disabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	do_smp_send_nmi_ipi(cpu, safe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	nmi_ipi_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		nmi_ipi_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 		nmi_ipi_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 		if (delay_us) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 			delay_us--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 			if (!delay_us)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 		ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 		cpumask_clear(&nmi_ipi_pending_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 	nmi_ipi_function = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	nmi_ipi_busy = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	nmi_ipi_unlock_end(&flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) #endif /* CONFIG_NMI_IPI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) void tick_broadcast(const struct cpumask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	for_each_cpu(cpu, mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) #ifdef CONFIG_DEBUGGER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) void debugger_ipi_callback(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	debugger_ipi(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) void smp_send_debugger_break(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) #ifdef CONFIG_KEXEC_CORE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	if (kdump_in_progress() && crash_wake_offline) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 		for_each_present_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 			if (cpu_online(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 			 * crash_ipi_callback will wait for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 			 * all cpus, including offline CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 			 * We don't care about nmi_ipi_function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 			 * Offline cpus will jump straight into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 			 * crash_ipi_callback, we can skip the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 			 * entire NMI dance and waiting for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 			 * cpus to clear pending mask, etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 			do_smp_send_nmi_ipi(cpu, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) #ifdef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) static void crash_stop_this_cpu(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) static void crash_stop_this_cpu(void *dummy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	 * Just busy wait here and avoid marking CPU as offline to ensure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	 * register data is captured appropriately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 	while (1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 		cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) void crash_smp_send_stop(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 	static bool stopped = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	 * In case of fadump, register data for all CPUs is captured by f/w
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	 * this rtas call to avoid tricky post processing of those CPUs'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	 * backtraces.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	if (should_fadump_crash())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	if (stopped)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	stopped = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) #ifdef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	smp_call_function(crash_stop_this_cpu, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) #endif /* CONFIG_NMI_IPI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) #ifdef CONFIG_NMI_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) static void nmi_stop_this_cpu(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	set_cpu_online(smp_processor_id(), false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	spin_begin();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	while (1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 		spin_cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) void smp_send_stop(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) #else /* CONFIG_NMI_IPI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) static void stop_this_cpu(void *dummy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	hard_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	 * to know other CPUs are offline before it breaks locks to flush
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	 * printk buffers, in case we panic()ed while holding the lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	set_cpu_online(smp_processor_id(), false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	spin_begin();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	while (1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 		spin_cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) void smp_send_stop(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	static bool stopped = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	 * Prevent waiting on csd lock from a previous smp_send_stop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	 * This is racy, but in general callers try to do the right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	 * thing and only fire off one smp_send_stop (e.g., see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	 * kernel/panic.c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	if (stopped)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	stopped = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	smp_call_function(stop_this_cpu, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) #endif /* CONFIG_NMI_IPI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) struct task_struct *current_set[NR_CPUS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) static void smp_store_cpu_info(int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) #ifdef CONFIG_PPC_FSL_BOOK3E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	per_cpu(next_tlbcam_idx, id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705)  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706)  * rather than just passing around the cpumask we pass around a function that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707)  * returns the that cpumask for the given CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	cpumask_set_cpu(i, get_cpumask(j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	cpumask_set_cpu(j, get_cpumask(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) static void set_cpus_unrelated(int i, int j,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 		struct cpumask *(*get_cpumask)(int))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	cpumask_clear_cpu(i, get_cpumask(j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	cpumask_clear_cpu(j, get_cpumask(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725)  * Extends set_cpus_related. Instead of setting one CPU at a time in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726)  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 				struct cpumask *(*dstmask)(int))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	struct cpumask *mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	int k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	mask = srcmask(j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	for_each_cpu(k, srcmask(i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 		cpumask_or(dstmask(k), dstmask(k), mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	if (i == j)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	mask = srcmask(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	for_each_cpu(k, srcmask(j))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 		cpumask_or(dstmask(k), dstmask(k), mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747)  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748)  *                      property for the CPU device node @dn and stores
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749)  *                      the parsed output in the thread_groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750)  *                      structure @tg if the ibm,thread-groups[0]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751)  *                      matches @property.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753)  * @dn: The device node of the CPU device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754)  * @tg: Pointer to a thread group structure into which the parsed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755)  *      output of "ibm,thread-groups" is stored.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756)  * @property: The property of the thread-group that the caller is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757)  *            interested in.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759)  * ibm,thread-groups[0..N-1] array defines which group of threads in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760)  * the CPU-device node can be grouped together based on the property.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762)  * ibm,thread-groups[0] tells us the property based on which the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763)  * threads are being grouped together. If this value is 1, it implies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764)  * that the threads in the same group share L1, translation cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766)  * ibm,thread-groups[1] tells us how many such thread groups exist.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768)  * ibm,thread-groups[2] tells us the number of threads in each such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769)  * group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771)  * ibm,thread-groups[3..N-1] is the list of threads identified by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772)  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773)  * the grouping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775)  * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776)  * implies that there are 2 groups of 4 threads each, where each group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777)  * of threads share L1, translation cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779)  * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780)  * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781)  * 11, 12} structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783)  * Returns 0 on success, -EINVAL if the property does not exist,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784)  * -ENODATA if property does not have a value, and -EOVERFLOW if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785)  * property data isn't large enough.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) static int parse_thread_groups(struct device_node *dn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 			       struct thread_groups *tg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 			       unsigned int property)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	u32 *thread_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	size_t total_threads;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 					 thread_group_array, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	tg->property = thread_group_array[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	tg->nr_groups = thread_group_array[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	tg->threads_per_group = thread_group_array[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	if (tg->property != property ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	    tg->nr_groups < 1 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	    tg->threads_per_group < 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 		return -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 	total_threads = tg->nr_groups * tg->threads_per_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 					 thread_group_array,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 					 3 + total_threads);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	thread_list = &thread_group_array[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	for (i = 0 ; i < total_threads; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 		tg->thread_list[i] = thread_list[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827)  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828)  *                              that @cpu belongs to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830)  * @cpu : The logical CPU whose thread group is being searched.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831)  * @tg : The thread-group structure of the CPU node which @cpu belongs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832)  *       to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834)  * Returns the index to tg->thread_list that points to the the start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835)  * of the thread_group that @cpu belongs to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837)  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838)  * tg->thread_list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	for (i = 0; i < tg->nr_groups; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		int group_start = i * tg->threads_per_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 		for (j = 0; j < tg->threads_per_group; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 			int idx = group_start + j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 			if (tg->thread_list[idx] == hw_cpu_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 				return group_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 	return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) static int init_cpu_l1_cache_map(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	struct thread_groups tg = {.property = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 				   .nr_groups = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 				   .threads_per_group = 0};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	int first_thread = cpu_first_thread_sibling(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	int i, cpu_group_start = -1, err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	if (!dn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 		return -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	if (unlikely(cpu_group_start == -1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 		WARN_ON_ONCE(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 		err = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 				GFP_KERNEL, cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 		int i_group_start = get_cpu_thread_group_start(i, &tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		if (unlikely(i_group_start == -1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 			WARN_ON_ONCE(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 			err = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		if (i_group_start == cpu_group_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 			cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	of_node_put(dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) static bool shared_caches;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) #ifdef CONFIG_SCHED_SMT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) /* cpumask of CPUs with asymmetric SMT dependency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) static int powerpc_smt_flags(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		flags |= SD_ASYM_PACKING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	return flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922)  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923)  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924)  * since the migrated task remains cache hot. We want to take advantage of this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925)  * at the scheduler level so an extra topology level is required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) static int powerpc_shared_cache_flags(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	return SD_SHARE_PKG_RESOURCES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933)  * We can't just pass cpu_l2_cache_mask() directly because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934)  * returns a non-const pointer and the compiler barfs on that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) static const struct cpumask *shared_cache_mask(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	return per_cpu(cpu_l2_cache_map, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) #ifdef CONFIG_SCHED_SMT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) static const struct cpumask *smallcore_smt_mask(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	return cpu_smallcore_mask(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) static struct cpumask *cpu_coregroup_mask(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	return per_cpu(cpu_coregroup_map, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) static bool has_coregroup_support(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	return coregroup_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) static const struct cpumask *cpu_mc_mask(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	return cpu_coregroup_mask(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) static struct sched_domain_topology_level powerpc_topology[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) #ifdef CONFIG_SCHED_SMT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	{ cpu_mc_mask, SD_INIT_NAME(MC) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 	{ NULL, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) static int __init init_big_cores(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		int err = init_cpu_l1_cache_map(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 			return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 					GFP_KERNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 					cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	has_big_cores = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) void __init smp_prepare_cpus(unsigned int max_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	DBG("smp_prepare_cpus\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	/* 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	 * setup_cpu may need to be called on the boot cpu. We havent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	 * spun any cpus up but lets be paranoid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	BUG_ON(boot_cpuid != smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	/* Fixup boot cpu */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	smp_store_cpu_info(boot_cpuid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	cpu_callin_map[boot_cpuid] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 					GFP_KERNEL, cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 					GFP_KERNEL, cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 					GFP_KERNEL, cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 		if (has_coregroup_support())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 						GFP_KERNEL, cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) #ifdef CONFIG_NEED_MULTIPLE_NODES
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 		 * numa_node_id() works after this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 		if (cpu_present(cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 			set_cpu_numa_mem(cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 				local_memory_node(numa_cpu_lookup_table[cpu]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	/* Init the cpumasks so the boot CPU is related to itself */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	if (has_coregroup_support())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	init_big_cores();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 	if (has_big_cores) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 		cpumask_set_cpu(boot_cpuid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 				cpu_smallcore_mask(boot_cpuid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	if (smp_ops && smp_ops->probe)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 		smp_ops->probe();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) void smp_prepare_boot_cpu(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 	BUG_ON(smp_processor_id() != boot_cpuid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) #ifdef CONFIG_PPC64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	paca_ptrs[boot_cpuid]->__current = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 	current_set[boot_cpuid] = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) int generic_cpu_disable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	if (cpu == boot_cpuid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	set_cpu_online(cpu, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) #ifdef CONFIG_PPC64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 	vdso_data->processorCount--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	/* Update affinity of all IRQs previously aimed at this CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	irq_migrate_all_off_this_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	 * Depending on the details of the interrupt controller, it's possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 	 * that one of the interrupts we just migrated away from this CPU is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	 * actually already pending on this CPU. If we leave it in that state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 	 * the interrupt will never be EOI'ed, and will never fire again. So
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	 * temporarily enable interrupts here, to allow any pending interrupt to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	 * be received (and EOI'ed), before we take this CPU offline.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	mdelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) void generic_cpu_die(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	for (i = 0; i < 100; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 		smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 		if (is_cpu_dead(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 		msleep(100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) void generic_set_cpu_dead(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	per_cpu(cpu_state, cpu) = CPU_DEAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109)  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110)  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111)  * which makes the delay in generic_cpu_die() not happen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) void generic_set_cpu_up(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) int generic_check_cpu_restart(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) int is_cpu_dead(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) static bool secondaries_inhibited(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	return kvm_hv_mode_active();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) #else /* HOTPLUG_CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) #define secondaries_inhibited()		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) #ifdef CONFIG_PPC64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	paca_ptrs[cpu]->__current = idle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	idle->cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	secondary_current = current_set[cpu] = idle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) int __cpu_up(unsigned int cpu, struct task_struct *tidle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	int rc, c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 	 * Don't allow secondary threads to come online if inhibited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	if (threads_per_core > 1 && secondaries_inhibited() &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	    cpu_thread_in_subcore(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	if (smp_ops == NULL ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 	cpu_idle_thread_init(cpu, tidle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	 * The platform might need to allocate resources prior to bringing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	 * up the CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	if (smp_ops->prepare_cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 		rc = smp_ops->prepare_cpu(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 		if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 			return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	/* Make sure callin-map entry is 0 (can be leftover a CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	 * hotplug
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	cpu_callin_map[cpu] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	/* The information for processor bringup must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	 * be written out to main store before we release
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	 * the processor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	/* wake up cpus */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	DBG("smp: kicking cpu %d\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	rc = smp_ops->kick_cpu(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	 * wait to see if the cpu made a callin (is actually up).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	 * use this value that I found through experimentation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	 * -- Cort
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	if (system_state < SYSTEM_RUNNING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 			udelay(100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		 * CPUs can take much longer to come up in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		 * hotplug case.  Wait five seconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 			msleep(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	if (!cpu_callin_map[cpu]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 		return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	DBG("Processor %u found.\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 	if (smp_ops->give_timebase)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 		smp_ops->give_timebase();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 	/* Wait until cpu puts itself in the online & active maps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	spin_until_cond(cpu_online(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) /* Return the value of the reg property corresponding to the given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231)  * logical cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) int cpu_to_core_id(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 	struct device_node *np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 	const __be32 *reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 	int id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 	np = of_get_cpu_node(cpu, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 	if (!np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 	reg = of_get_property(np, "reg", NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 	if (!reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	id = be32_to_cpup(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 	of_node_put(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 	return id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) EXPORT_SYMBOL_GPL(cpu_to_core_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) /* Helper routines for cpu to core mapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) int cpu_core_index_of_thread(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	return cpu >> threads_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) int cpu_first_thread_of_core(int core)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 	return core << threads_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) /* Must be called when no change can occur to cpu_present_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268)  * i.e. during cpu online or offline.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) static struct device_node *cpu_to_l2cache(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	struct device_node *np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 	struct device_node *cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 	if (!cpu_present(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 	np = of_get_cpu_node(cpu, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 	if (np == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 	cache = of_find_next_cache_node(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 	of_node_put(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 	return cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	struct device_node *l2_cache, *np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 	if (has_big_cores)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 		submask_fn = cpu_smallcore_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 	l2_cache = cpu_to_l2cache(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 	if (!l2_cache || !*mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 		/* Assume only core siblings share cache with this CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 		for_each_cpu(i, submask_fn(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	/* Update l2-cache mask with all the CPUs that are part of submask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	/* Skip all CPUs already part of current CPU l2-cache mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	for_each_cpu(i, *mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 		 * when updating the marks the current CPU has not been marked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 		 * online, but we need to update the cache masks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 		np = cpu_to_l2cache(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 		/* Skip all CPUs already part of current CPU l2-cache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 		if (np == l2_cache) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 			cpumask_andnot(*mask, *mask, submask_fn(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 		of_node_put(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	of_node_put(l2_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) static void remove_cpu_from_masks(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	if (shared_caches)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 		mask_fn = cpu_l2_cache_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	for_each_cpu(i, mask_fn(cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 		if (has_big_cores)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	for_each_cpu(i, cpu_core_mask(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 		set_cpus_unrelated(cpu, i, cpu_core_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	if (has_coregroup_support()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 		for_each_cpu(i, cpu_coregroup_mask(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) static inline void add_cpu_to_smallcore_masks(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	if (!has_big_cores)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	for_each_cpu(i, per_cpu(cpu_l1_cache_map, cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 		if (cpu_online(i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 			set_cpus_related(i, cpu, cpu_smallcore_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	int coregroup_id = cpu_to_coregroup_id(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	if (shared_caches)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 		submask_fn = cpu_l2_cache_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 	if (!*mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 		/* Assume only siblings are part of this CPU's coregroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 		for_each_cpu(i, submask_fn(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 			set_cpus_related(cpu, i, cpu_coregroup_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	/* Update coregroup mask with all the CPUs that are part of submask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	/* Skip all CPUs already part of coregroup mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	for_each_cpu(i, *mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 		/* Skip all CPUs not part of this coregroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 		if (coregroup_id == cpu_to_coregroup_id(i)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 			cpumask_andnot(*mask, *mask, submask_fn(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) static void add_cpu_to_masks(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	int first_thread = cpu_first_thread_sibling(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	int chip_id = cpu_to_chip_id(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 	cpumask_var_t mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 	bool ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 	 * This CPU will not be in the online mask yet so we need to manually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	 * add it to it's own thread sibling mask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 	for (i = first_thread; i < first_thread + threads_per_core; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 		if (cpu_online(i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 			set_cpus_related(i, cpu, cpu_sibling_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	add_cpu_to_smallcore_masks(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 	update_mask_by_l2(cpu, &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	if (has_coregroup_support())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 		update_coregroup_mask(cpu, &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 	if (shared_caches)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 		submask_fn = cpu_l2_cache_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 	/* Update core_mask with all the CPUs that are part of submask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	/* Skip all CPUs already part of current CPU core mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 	/* If chip_id is -1; limit the cpu_core_mask to within DIE*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 	if (chip_id == -1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 	for_each_cpu(i, mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 		if (chip_id == cpu_to_chip_id(i)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 			cpumask_andnot(mask, mask, submask_fn(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 			cpumask_andnot(mask, mask, cpu_core_mask(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 	free_cpumask_var(mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) /* Activate a secondary processor. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) void start_secondary(void *unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 	unsigned int cpu = raw_smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 	mmgrab(&init_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 	current->active_mm = &init_mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 	smp_store_cpu_info(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 	set_dec(tb_ticks_per_jiffy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 	rcu_cpu_starting(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 	cpu_callin_map[cpu] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 	if (smp_ops->setup_cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 		smp_ops->setup_cpu(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 	if (smp_ops->take_timebase)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 		smp_ops->take_timebase();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 	secondary_cpu_time_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) #ifdef CONFIG_PPC64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 	if (system_state == SYSTEM_RUNNING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 		vdso_data->processorCount++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	vdso_getcpu_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	set_numa_node(numa_cpu_lookup_table[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 	/* Update topology CPU masks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 	add_cpu_to_masks(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 	 * Check for any shared caches. Note that this must be done on a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 	 * per-core basis because one core in the pair might be disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	if (!shared_caches) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 		if (has_big_cores)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 			sibling_mask = cpu_smallcore_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 			shared_caches = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 	smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	notify_cpu_starting(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 	set_cpu_online(cpu, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 	boot_init_stack_canary();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 	/* We can enable ftrace for secondary cpus now */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 	this_cpu_enable_ftrace();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 	BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) #ifdef CONFIG_PROFILING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) int setup_profiling_timer(unsigned int multiplier)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) static void fixup_topology(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) #ifdef CONFIG_SCHED_SMT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 	if (has_big_cores) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 		pr_info("Big cores detected but using small core scheduling\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 	if (!has_coregroup_support())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	 * Try to consolidate topology levels here instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 	 * allowing scheduler to degenerate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	 * - Dont consolidate if masks are different.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	 * - Dont consolidate if sd_flags exists and are different.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 	for (i = 1; i <= die_idx; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 		if (!powerpc_topology[i - 1].sd_flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 		powerpc_topology[i].name = powerpc_topology[i + 1].name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) void __init smp_cpus_done(unsigned int max_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 	 * We are running pinned to the boot CPU, see rest_init().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 	if (smp_ops && smp_ops->setup_cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 		smp_ops->setup_cpu(boot_cpuid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	if (smp_ops && smp_ops->bringup_done)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 		smp_ops->bringup_done();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 	dump_numa_cpu_topology();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	fixup_topology();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	set_sched_topology(powerpc_topology);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) int __cpu_disable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 	int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 	if (!smp_ops->cpu_disable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 		return -ENOSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 	this_cpu_disable_ftrace();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 	err = smp_ops->cpu_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 	/* Update sibling maps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 	remove_cpu_from_masks(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) void __cpu_die(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	if (smp_ops->cpu_die)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 		smp_ops->cpu_die(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) void arch_cpu_idle_dead(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 	 * Disable on the down path. This will be re-enabled by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 	 * start_secondary() via start_secondary_resume() below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 	this_cpu_disable_ftrace();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 	if (smp_ops->cpu_offline_self)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 		smp_ops->cpu_offline_self();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 	/* If we return, we re-enter start_secondary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 	start_secondary_resume();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) #endif