Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
*
* Communication to userspace based on kernel/printk.c
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/topology.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/nvram.h>
#include <linux/atomic.h>
#include <asm/machdep.h>
#include <asm/topology.h>
static DEFINE_SPINLOCK(rtasd_log_lock);
static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
static char *rtas_log_buf;
static unsigned long rtas_log_start;
static unsigned long rtas_log_size;
static int surveillance_timeout = -1;
static unsigned int rtas_error_log_max;
static unsigned int rtas_error_log_buffer_max;
/* RTAS service tokens */
static unsigned int event_scan;
static unsigned int rtas_event_scan_rate;
static bool full_rtas_msgs;
/* Stop logging to nvram after first fatal error */
static int logging_enabled; /* Until we initialize everything,
* make sure we don't try logging
* anything */
static int error_log_cnt;
/*
* Since we use 32 bit RTAS, the physical address of this must be below
* 4G or else bad things happen. Allocate this in the kernel data and
* make it big enough.
*/
static unsigned char logdata[RTAS_ERROR_LOG_MAX];
static char *rtas_type[] = {
<------>"Unknown", "Retry", "TCE Error", "Internal Device Failure",
<------>"Timeout", "Data Parity", "Address Parity", "Cache Parity",
<------>"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
};
static char *rtas_event_type(int type)
{
<------>if ((type > 0) && (type < 11))
<------><------>return rtas_type[type];
<------>switch (type) {
<------><------>case RTAS_TYPE_EPOW:
<------><------><------>return "EPOW";
<------><------>case RTAS_TYPE_PLATFORM:
<------><------><------>return "Platform Error";
<------><------>case RTAS_TYPE_IO:
<------><------><------>return "I/O Event";
<------><------>case RTAS_TYPE_INFO:
<------><------><------>return "Platform Information Event";
<------><------>case RTAS_TYPE_DEALLOC:
<------><------><------>return "Resource Deallocation Event";
<------><------>case RTAS_TYPE_DUMP:
<------><------><------>return "Dump Notification Event";
<------><------>case RTAS_TYPE_PRRN:
<------><------><------>return "Platform Resource Reassignment Event";
<------><------>case RTAS_TYPE_HOTPLUG:
<------><------><------>return "Hotplug Event";
<------>}
<------>return rtas_type[0];
}
/* To see this info, grep RTAS /var/log/messages and each entry
* will be collected together with obvious begin/end.
* There will be a unique identifier on the begin and end lines.
* This will persist across reboots.
*
* format of error logs returned from RTAS:
* bytes (size) : contents
* --------------------------------------------------------
* 0-7 (8) : rtas_error_log
* 8-47 (40) : extended info
* 48-51 (4) : vendor id
* 52-1023 (vendor specific) : location code and debug data
*/
static void printk_log_rtas(char *buf, int len)
{
<------>int i,j,n = 0;
<------>int perline = 16;
<------>char buffer[64];
<------>char * str = "RTAS event";
<------>if (full_rtas_msgs) {
<------><------>printk(RTAS_DEBUG "%d -------- %s begin --------\n",
<------><------> error_log_cnt, str);
<------><------>/*
<------><------> * Print perline bytes on each line, each line will start
<------><------> * with RTAS and a changing number, so syslogd will
<------><------> * print lines that are otherwise the same. Separate every
<------><------> * 4 bytes with a space.
<------><------> */
<------><------>for (i = 0; i < len; i++) {
<------><------><------>j = i % perline;
<------><------><------>if (j == 0) {
<------><------><------><------>memset(buffer, 0, sizeof(buffer));
<------><------><------><------>n = sprintf(buffer, "RTAS %d:", i/perline);
<------><------><------>}
<------><------><------>if ((i % 4) == 0)
<------><------><------><------>n += sprintf(buffer+n, " ");
<------><------><------>n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
<------><------><------>if (j == (perline-1))
<------><------><------><------>printk(KERN_DEBUG "%s\n", buffer);
<------><------>}
<------><------>if ((i % perline) != 0)
<------><------><------>printk(KERN_DEBUG "%s\n", buffer);
<------><------>printk(RTAS_DEBUG "%d -------- %s end ----------\n",
<------><------> error_log_cnt, str);
<------>} else {
<------><------>struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
<------><------>printk(RTAS_DEBUG "event: %d, Type: %s (%d), Severity: %d\n",
<------><------> error_log_cnt,
<------><------> rtas_event_type(rtas_error_type(errlog)),
<------><------> rtas_error_type(errlog),
<------><------> rtas_error_severity(errlog));
<------>}
}
static int log_rtas_len(char * buf)
{
<------>int len;
<------>struct rtas_error_log *err;
<------>uint32_t extended_log_length;
<------>/* rtas fixed header */
<------>len = 8;
<------>err = (struct rtas_error_log *)buf;
<------>extended_log_length = rtas_error_extended_log_length(err);
<------>if (rtas_error_extended(err) && extended_log_length) {
<------><------>/* extended header */
<------><------>len += extended_log_length;
<------>}
<------>if (rtas_error_log_max == 0)
<------><------>rtas_error_log_max = rtas_get_error_log_max();
<------>if (len > rtas_error_log_max)
<------><------>len = rtas_error_log_max;
<------>return len;
}
/*
* First write to nvram, if fatal error, that is the only
* place we log the info. The error will be picked up
* on the next reboot by rtasd. If not fatal, run the
* method for the type of error. Currently, only RTAS
* errors have methods implemented, but in the future
* there might be a need to store data in nvram before a
* call to panic().
*
* XXX We write to nvram periodically, to indicate error has
* been written and sync'd, but there is a possibility
* that if we don't shutdown correctly, a duplicate error
* record will be created on next reboot.
*/
void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
{
<------>unsigned long offset;
<------>unsigned long s;
<------>int len = 0;
<------>pr_debug("rtasd: logging event\n");
<------>if (buf == NULL)
<------><------>return;
<------>spin_lock_irqsave(&rtasd_log_lock, s);
<------>/* get length and increase count */
<------>switch (err_type & ERR_TYPE_MASK) {
<------>case ERR_TYPE_RTAS_LOG:
<------><------>len = log_rtas_len(buf);
<------><------>if (!(err_type & ERR_FLAG_BOOT))
<------><------><------>error_log_cnt++;
<------><------>break;
<------>case ERR_TYPE_KERNEL_PANIC:
<------>default:
<------><------>WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
<------><------>spin_unlock_irqrestore(&rtasd_log_lock, s);
<------><------>return;
<------>}
#ifdef CONFIG_PPC64
<------>/* Write error to NVRAM */
<------>if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
<------><------>nvram_write_error_log(buf, len, err_type, error_log_cnt);
#endif /* CONFIG_PPC64 */
<------>/*
<------> * rtas errors can occur during boot, and we do want to capture
<------> * those somewhere, even if nvram isn't ready (why not?), and even
<------> * if rtasd isn't ready. Put them into the boot log, at least.
<------> */
<------>if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
<------><------>printk_log_rtas(buf, len);
<------>/* Check to see if we need to or have stopped logging */
<------>if (fatal || !logging_enabled) {
<------><------>logging_enabled = 0;
<------><------>WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
<------><------>spin_unlock_irqrestore(&rtasd_log_lock, s);
<------><------>return;
<------>}
<------>/* call type specific method for error */
<------>switch (err_type & ERR_TYPE_MASK) {
<------>case ERR_TYPE_RTAS_LOG:
<------><------>offset = rtas_error_log_buffer_max *
<------><------><------>((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
<------><------>/* First copy over sequence number */
<------><------>memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
<------><------>/* Second copy over error log data */
<------><------>offset += sizeof(int);
<------><------>memcpy(&rtas_log_buf[offset], buf, len);
<------><------>if (rtas_log_size < LOG_NUMBER)
<------><------><------>rtas_log_size += 1;
<------><------>else
<------><------><------>rtas_log_start += 1;
<------><------>WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
<------><------>spin_unlock_irqrestore(&rtasd_log_lock, s);
<------><------>wake_up_interruptible(&rtas_log_wait);
<------><------>break;
<------>case ERR_TYPE_KERNEL_PANIC:
<------>default:
<------><------>WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
<------><------>spin_unlock_irqrestore(&rtasd_log_lock, s);
<------><------>return;
<------>}
}
static void handle_rtas_event(const struct rtas_error_log *log)
{
<------>if (!machine_is(pseries))
<------><------>return;
<------>if (rtas_error_type(log) == RTAS_TYPE_PRRN)
<------><------>pr_info_ratelimited("Platform resource reassignment ignored.\n");
}
static int rtas_log_open(struct inode * inode, struct file * file)
{
<------>return 0;
}
static int rtas_log_release(struct inode * inode, struct file * file)
{
<------>return 0;
}
/* This will check if all events are logged, if they are then, we
* know that we can safely clear the events in NVRAM.
* Next we'll sit and wait for something else to log.
*/
static ssize_t rtas_log_read(struct file * file, char __user * buf,
<------><------><------> size_t count, loff_t *ppos)
{
<------>int error;
<------>char *tmp;
<------>unsigned long s;
<------>unsigned long offset;
<------>if (!buf || count < rtas_error_log_buffer_max)
<------><------>return -EINVAL;
<------>count = rtas_error_log_buffer_max;
<------>if (!access_ok(buf, count))
<------><------>return -EFAULT;
<------>tmp = kmalloc(count, GFP_KERNEL);
<------>if (!tmp)
<------><------>return -ENOMEM;
<------>spin_lock_irqsave(&rtasd_log_lock, s);
<------>/* if it's 0, then we know we got the last one (the one in NVRAM) */
<------>while (rtas_log_size == 0) {
<------><------>if (file->f_flags & O_NONBLOCK) {
<------><------><------>spin_unlock_irqrestore(&rtasd_log_lock, s);
<------><------><------>error = -EAGAIN;
<------><------><------>goto out;
<------><------>}
<------><------>if (!logging_enabled) {
<------><------><------>spin_unlock_irqrestore(&rtasd_log_lock, s);
<------><------><------>error = -ENODATA;
<------><------><------>goto out;
<------><------>}
#ifdef CONFIG_PPC64
<------><------>nvram_clear_error_log();
#endif /* CONFIG_PPC64 */
<------><------>spin_unlock_irqrestore(&rtasd_log_lock, s);
<------><------>error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
<------><------>if (error)
<------><------><------>goto out;
<------><------>spin_lock_irqsave(&rtasd_log_lock, s);
<------>}
<------>offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
<------>memcpy(tmp, &rtas_log_buf[offset], count);
<------>rtas_log_start += 1;
<------>rtas_log_size -= 1;
<------>spin_unlock_irqrestore(&rtasd_log_lock, s);
<------>error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
out:
<------>kfree(tmp);
<------>return error;
}
static __poll_t rtas_log_poll(struct file *file, poll_table * wait)
{
<------>poll_wait(file, &rtas_log_wait, wait);
<------>if (rtas_log_size)
<------><------>return EPOLLIN | EPOLLRDNORM;
<------>return 0;
}
static const struct proc_ops rtas_log_proc_ops = {
<------>.proc_read = rtas_log_read,
<------>.proc_poll = rtas_log_poll,
<------>.proc_open = rtas_log_open,
<------>.proc_release = rtas_log_release,
<------>.proc_lseek = noop_llseek,
};
static int enable_surveillance(int timeout)
{
<------>int error;
<------>error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
<------>if (error == 0)
<------><------>return 0;
<------>if (error == -EINVAL) {
<------><------>printk(KERN_DEBUG "rtasd: surveillance not supported\n");
<------><------>return 0;
<------>}
<------>printk(KERN_ERR "rtasd: could not update surveillance\n");
<------>return -1;
}
static void do_event_scan(void)
{
<------>int error;
<------>do {
<------><------>memset(logdata, 0, rtas_error_log_max);
<------><------>error = rtas_call(event_scan, 4, 1, NULL,
<------><------><------><------> RTAS_EVENT_SCAN_ALL_EVENTS, 0,
<------><------><------><------> __pa(logdata), rtas_error_log_max);
<------><------>if (error == -1) {
<------><------><------>printk(KERN_ERR "event-scan failed\n");
<------><------><------>break;
<------><------>}
<------><------>if (error == 0) {
<------><------><------>if (rtas_error_type((struct rtas_error_log *)logdata) !=
<------><------><------> RTAS_TYPE_PRRN)
<------><------><------><------>pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
<------><------><------><------><------><------> 0);
<------><------><------>handle_rtas_event((struct rtas_error_log *)logdata);
<------><------>}
<------>} while(error == 0);
}
static void rtas_event_scan(struct work_struct *w);
static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
/*
* Delay should be at least one second since some machines have problems if
* we call event-scan too quickly.
*/
static unsigned long event_scan_delay = 1*HZ;
static int first_pass = 1;
static void rtas_event_scan(struct work_struct *w)
{
<------>unsigned int cpu;
<------>do_event_scan();
<------>get_online_cpus();
<------>/* raw_ OK because just using CPU as starting point. */
<------>cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
if (cpu >= nr_cpu_ids) {
<------><------>cpu = cpumask_first(cpu_online_mask);
<------><------>if (first_pass) {
<------><------><------>first_pass = 0;
<------><------><------>event_scan_delay = 30*HZ/rtas_event_scan_rate;
<------><------><------>if (surveillance_timeout != -1) {
<------><------><------><------>pr_debug("rtasd: enabling surveillance\n");
<------><------><------><------>enable_surveillance(surveillance_timeout);
<------><------><------><------>pr_debug("rtasd: surveillance enabled\n");
<------><------><------>}
<------><------>}
<------>}
<------>schedule_delayed_work_on(cpu, &event_scan_work,
<------><------>__round_jiffies_relative(event_scan_delay, cpu));
<------>put_online_cpus();
}
#ifdef CONFIG_PPC64
static void retrieve_nvram_error_log(void)
{
<------>unsigned int err_type ;
<------>int rc ;
<------>/* See if we have any error stored in NVRAM */
<------>memset(logdata, 0, rtas_error_log_max);
<------>rc = nvram_read_error_log(logdata, rtas_error_log_max,
<------> &err_type, &error_log_cnt);
<------>/* We can use rtas_log_buf now */
<------>logging_enabled = 1;
<------>if (!rc) {
<------><------>if (err_type != ERR_FLAG_ALREADY_LOGGED) {
<------><------><------>pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
<------><------>}
<------>}
}
#else /* CONFIG_PPC64 */
static void retrieve_nvram_error_log(void)
{
}
#endif /* CONFIG_PPC64 */
static void start_event_scan(void)
{
<------>printk(KERN_DEBUG "RTAS daemon started\n");
<------>pr_debug("rtasd: will sleep for %d milliseconds\n",
<------><------> (30000 / rtas_event_scan_rate));
<------>/* Retrieve errors from nvram if any */
<------>retrieve_nvram_error_log();
<------>schedule_delayed_work_on(cpumask_first(cpu_online_mask),
<------><------><------><------> &event_scan_work, event_scan_delay);
}
/* Cancel the rtas event scan work */
void rtas_cancel_event_scan(void)
{
<------>cancel_delayed_work_sync(&event_scan_work);
}
EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
static int __init rtas_event_scan_init(void)
{
<------>if (!machine_is(pseries) && !machine_is(chrp))
<------><------>return 0;
<------>/* No RTAS */
<------>event_scan = rtas_token("event-scan");
<------>if (event_scan == RTAS_UNKNOWN_SERVICE) {
<------><------>printk(KERN_INFO "rtasd: No event-scan on system\n");
<------><------>return -ENODEV;
<------>}
<------>rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
<------>if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
<------><------>printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
<------><------>return -ENODEV;
<------>}
<------>if (!rtas_event_scan_rate) {
<------><------>/* Broken firmware: take a rate of zero to mean don't scan */
<------><------>printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
<------><------>return 0;
<------>}
<------>/* Make room for the sequence number */
<------>rtas_error_log_max = rtas_get_error_log_max();
<------>rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
<------>rtas_log_buf = vmalloc(array_size(LOG_NUMBER,
<------><------><------><------><------> rtas_error_log_buffer_max));
<------>if (!rtas_log_buf) {
<------><------>printk(KERN_ERR "rtasd: no memory\n");
<------><------>return -ENOMEM;
<------>}
<------>start_event_scan();
<------>return 0;
}
arch_initcall(rtas_event_scan_init);
static int __init rtas_init(void)
{
<------>struct proc_dir_entry *entry;
<------>if (!machine_is(pseries) && !machine_is(chrp))
<------><------>return 0;
<------>if (!rtas_log_buf)
<------><------>return -ENODEV;
<------>entry = proc_create("powerpc/rtas/error_log", 0400, NULL,
<------><------><------> &rtas_log_proc_ops);
<------>if (!entry)
<------><------>printk(KERN_ERR "Failed to create error_log proc entry\n");
<------>return 0;
}
__initcall(rtas_init);
static int __init surveillance_setup(char *str)
{
<------>int i;
<------>/* We only do surveillance on pseries */
<------>if (!machine_is(pseries))
<------><------>return 0;
<------>if (get_option(&str,&i)) {
<------><------>if (i >= 0 && i <= 255)
<------><------><------>surveillance_timeout = i;
<------>}
<------>return 1;
}
__setup("surveillance=", surveillance_setup);
static int __init rtasmsgs_setup(char *str)
{
<------>return (kstrtobool(str, &full_rtas_msgs) == 0);
}
__setup("rtasmsgs=", rtasmsgs_setup);