^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) #ifndef _ASM_POWERPC_DMA_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) #define _ASM_POWERPC_DMA_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) #ifdef __KERNEL__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Defines for using and allocating dma channels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Written by Hennus Bergman, 1992.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * High DMA channel support & info by Hannu Savolainen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * and John Boyd, Nov. 1992.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * Changes for ppc sound by Christoph Nadig
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * Note: Adapted for PowerPC by Gary Thomas
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * Modified by Cort Dougan <cort@cs.nmt.edu>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * None of this really applies for Power Macintoshes. There is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * basically just enough here to get kernel/dma.c to compile.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #ifndef MAX_DMA_CHANNELS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define MAX_DMA_CHANNELS 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) /* The maximum address that we can perform a DMA transfer to on this platform */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) /* Doesn't really apply... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define MAX_DMA_ADDRESS (~0UL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define dma_outb outb_p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define dma_outb outb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define dma_inb inb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * NOTES about DMA transfers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * controller 1: channels 0-3, byte operations, ports 00-1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * controller 2: channels 4-7, word operations, ports C0-DF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * - ALL registers are 8 bits only, regardless of transfer size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) * - channel 4 is not used - cascades 1 into 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * - channels 0-3 are byte - addresses/counts are for physical bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) * - channels 5-7 are word - addresses/counts are for physical words
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) * - transfer count loaded to registers is 1 less than actual count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) * - controller 2 offsets are all even (2x offsets for controller 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) * - page registers for 5-7 don't use data bit 0, represent 128K pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * - page registers for 0-3 use bit 0, represent 64K pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) * Note that addresses loaded into registers must be _physical_ addresses,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) * not logical addresses (which may differ if paging is active).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) * Address mapping for channels 0-3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * | ... | | ... | | ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) * | ... | | ... | | ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) * | ... | | ... | | ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * P7 ... P0 A7 ... A0 A7 ... A0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * | Page | Addr MSB | Addr LSB | (DMA registers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) * Address mapping for channels 5-7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) * | ... | \ \ ... \ \ \ ... \ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) * | ... | \ \ ... \ \ \ ... \ (not used)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) * | ... | \ \ ... \ \ \ ... \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) * | Page | Addr MSB | Addr LSB | (DMA registers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) * the hardware level, so odd-byte transfers aren't possible).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) * Transfer count (_not # bytes_) is limited to 64K, represented as actual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) * and up to 128K bytes may be transferred on channels 5-7 in one operation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) /* 8237 DMA controllers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) /* DMA controller registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #define DMA1_CMD_REG 0x08 /* command register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) #define DMA1_STAT_REG 0x08 /* status register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #define DMA1_REQ_REG 0x09 /* request register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) #define DMA1_MODE_REG 0x0B /* mode register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) #define DMA2_CMD_REG 0xD0 /* command register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) #define DMA2_STAT_REG 0xD0 /* status register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define DMA2_REQ_REG 0xD2 /* request register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define DMA2_MODE_REG 0xD6 /* mode register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) #define DMA_ADDR_0 0x00 /* DMA address registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define DMA_ADDR_1 0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) #define DMA_ADDR_2 0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #define DMA_ADDR_3 0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) #define DMA_ADDR_4 0xC0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) #define DMA_ADDR_5 0xC4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) #define DMA_ADDR_6 0xC8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #define DMA_ADDR_7 0xCC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) #define DMA_CNT_0 0x01 /* DMA count registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) #define DMA_CNT_1 0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) #define DMA_CNT_2 0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #define DMA_CNT_3 0x07
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) #define DMA_CNT_4 0xC2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #define DMA_CNT_5 0xC6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #define DMA_CNT_6 0xCA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) #define DMA_CNT_7 0xCE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define DMA_LO_PAGE_0 0x87 /* DMA page registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #define DMA_LO_PAGE_1 0x83
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) #define DMA_LO_PAGE_2 0x81
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) #define DMA_LO_PAGE_3 0x82
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) #define DMA_LO_PAGE_5 0x8B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) #define DMA_LO_PAGE_6 0x89
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) #define DMA_LO_PAGE_7 0x8A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) #define DMA_HI_PAGE_0 0x487 /* DMA page registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) #define DMA_HI_PAGE_1 0x483
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) #define DMA_HI_PAGE_2 0x481
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) #define DMA_HI_PAGE_3 0x482
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) #define DMA_HI_PAGE_5 0x48B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) #define DMA_HI_PAGE_6 0x489
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) #define DMA_HI_PAGE_7 0x48A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #define DMA1_EXT_REG 0x40B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define DMA2_EXT_REG 0x4D6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) #ifndef __powerpc64__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) /* in arch/powerpc/kernel/setup_32.c -- Cort */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) extern unsigned int DMA_MODE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) extern unsigned int DMA_MODE_READ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) #define DMA_AUTOINIT 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) extern spinlock_t dma_spin_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) static __inline__ unsigned long claim_dma_lock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) spin_lock_irqsave(&dma_spin_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) return flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) static __inline__ void release_dma_lock(unsigned long flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) spin_unlock_irqrestore(&dma_spin_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) /* enable/disable a specific DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) static __inline__ void enable_dma(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) unsigned char ucDmaCmd = 0x00;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) if (dmanr != 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) dma_outb(0, DMA2_MASK_REG); /* This may not be enabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) dma_outb(ucDmaCmd, DMA2_CMD_REG); /* Enable group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) if (dmanr <= 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) dma_outb(dmanr, DMA1_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) dma_outb(ucDmaCmd, DMA1_CMD_REG); /* Enable group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) dma_outb(dmanr & 3, DMA2_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) static __inline__ void disable_dma(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) if (dmanr <= 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) dma_outb(dmanr | 4, DMA1_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) /* Clear the 'DMA Pointer Flip Flop'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) * Write 0 for LSB/MSB, 1 for MSB/LSB access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) * Use this once to initialize the FF to a known state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) * After that, keep track of it. :-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) * --- In order to do that, the DMA routines below should ---
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) * --- only be used while interrupts are disabled! ---
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) static __inline__ void clear_dma_ff(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) if (dmanr <= 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) dma_outb(0, DMA1_CLEAR_FF_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) dma_outb(0, DMA2_CLEAR_FF_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) /* set mode (above) for a specific DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) if (dmanr <= 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) dma_outb(mode | dmanr, DMA1_MODE_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) /* Set only the page register bits of the transfer address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) * This is used for successive transfers when we know the contents of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) * the lower 16 bits of the DMA current address register, but a 64k boundary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) * may have been crossed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) switch (dmanr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) dma_outb(pagenr, DMA_LO_PAGE_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) dma_outb(pagenr, DMA_LO_PAGE_1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) dma_outb(pagenr, DMA_LO_PAGE_2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) dma_outb(pagenr, DMA_LO_PAGE_3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) /* Set transfer address & page bits for specific DMA channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) * Assumes dma flipflop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) if (dmanr <= 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) dma_outb(phys & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) ((dmanr & 3) << 1) + IO_DMA1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) dma_outb((phys >> 8) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) ((dmanr & 3) << 1) + IO_DMA1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) dma_outb((phys >> 1) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) ((dmanr & 3) << 2) + IO_DMA2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) dma_outb((phys >> 9) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) ((dmanr & 3) << 2) + IO_DMA2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) set_dma_page(dmanr, phys >> 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) * a specific DMA channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) * You must ensure the parameters are valid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) * NOTE: from a manual: "the number of transfers is one more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) * than the initial word count"! This is taken into account.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) * Assumes dma flip-flop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) if (dmanr <= 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) dma_outb(count & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) dma_outb((count >> 8) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) dma_outb((count >> 1) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) dma_outb((count >> 9) & 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) /* Get DMA residue count. After a DMA transfer, this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) * should return zero. Reading this while a DMA transfer is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) * still in progress will return unpredictable results.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) * If called before the channel has been used, it may return 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) * Otherwise, it returns the number of _bytes_ left to transfer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) * Assumes DMA flip-flop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) static __inline__ int get_dma_residue(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) unsigned int io_port = (dmanr <= 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) /* using short to get 16-bit wrap around */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) unsigned short count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) count = 1 + dma_inb(io_port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) count += dma_inb(io_port) << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) return (dmanr <= 3) ? count : (count << 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) /* These are in kernel/dma.c: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) /* reserve a DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) extern int request_dma(unsigned int dmanr, const char *device_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) /* release it again */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) extern void free_dma(unsigned int dmanr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) #ifdef CONFIG_PCI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) extern int isa_dma_bridge_buggy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) #define isa_dma_bridge_buggy (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) #endif /* __KERNEL__ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) #endif /* _ASM_POWERPC_DMA_H */