Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) #ifndef _ASM_HASH_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) #define _ASM_HASH_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * HP-PA only implements integer multiply in the FPU.  However, for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * integer multiplies by constant, it has a number of shift-and-add
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * (but no shift-and-subtract, sigh!) instructions that a compiler
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * can synthesize a code sequence with.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * Unfortunately, GCC isn't very efficient at using them.  For example
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * it uses three instructions for "x *= 21" when only two are needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * But we can find a sequence manually.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #define HAVE_ARCH__HASH_32 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * This is a multiply by GOLDEN_RATIO_32 = 0x61C88647 optimized for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  * PA7100 pairing rules.  This is an in-order 2-way superscalar processor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  * Only one instruction in a pair may be a shift (by more than 3 bits),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * but other than that, simple ALU ops (including shift-and-add by up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * to 3 bits) may be paired arbitrarily.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * PA8xxx processors also dual-issue ALU instructions, although with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * fewer constraints, so this schedule is good for them, too.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  * This 6-step sequence was found by Yevgen Voronenko's implementation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * of the Hcub algorithm at http://spiral.ece.cmu.edu/mcm/gen.html.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) static inline u32 __attribute_const__ __hash_32(u32 x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	u32 a, b, c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	 * Phase 1: Compute  a = (x << 19) + x,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	 * b = (x << 9) + a, c = (x << 23) + b.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	a = x << 19;		/* Two shifts can't be paired */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	b = x << 9;	a += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	c = x << 23;	b += a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 			c += b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	/* Phase 2: Return (b<<11) + (c<<6) + (a<<3) - c */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	b <<= 11;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	a += c << 3;	b -= c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	return (a << 3) + b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #if BITS_PER_LONG == 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define HAVE_ARCH_HASH_64 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * Finding a good shift-and-add chain for GOLDEN_RATIO_64 is tricky,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * because available software for the purpose chokes on constants this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  * large.  (It's mostly designed for compiling FIR filter coefficients
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * into FPGAs.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  * However, Jason Thong pointed out a work-around.  The Hcub software
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  * (http://spiral.ece.cmu.edu/mcm/gen.html) is designed for *multiple*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  * constant multiplication, and is good at finding shift-and-add chains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  * which share common terms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * Looking at 0x0x61C8864680B583EB in binary:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * 0110000111001000100001100100011010000000101101011000001111101011
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  *  \______________/    \__________/       \_______/     \________/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  *   \____________________________/         \____________________/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * you can see the non-zero bits are divided into several well-separated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  * blocks.  Hcub can find algorithms for those terms separately, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  * can then be shifted and added together.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  * Dividing the input into 2, 3 or 4 blocks, Hcub can find solutions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * with 10, 9 or 8 adds, respectively, making a total of 11 for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * whole number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  * Using just two large blocks, 0xC3910C8D << 31 in the high bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  * and 0xB583EB in the low bits, produces as good an algorithm as any,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * and with one more small shift than alternatives.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  * The high bits are a larger number and more work to compute, as well
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  * as needing one extra cycle to shift left 31 bits before the final
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * addition, so they are the critical path for scheduling.  The low bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  * can fit into the scheduling slots left over.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * This _ASSIGN(dst, src) macro performs "dst = src", but prevents GCC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  * from inferring anything about the value assigned to "dest".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  * This prevents it from mis-optimizing certain sequences.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  * In particular, gcc is annoyingly eager to combine consecutive shifts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  * Given "x <<= 19; y += x; z += x << 1;", GCC will turn this into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  * "y += x << 19; z += x << 20;" even though the latter sequence needs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * an additional instruction and temporary register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  * Because no actual assembly code is generated, this construct is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  * usefully portable across all GCC platforms, and so can be test-compiled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  * on non-PA systems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)  * In two places, additional unused input dependencies are added.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)  * forces GCC's scheduling so it does not rearrange instructions too much.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)  * Because the PA-8xxx is out of order, I'm not sure how much this matters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)  * but why make it more difficult for the processor than necessary?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) #define _ASSIGN(dst, src, ...) asm("" : "=r" (dst) : "0" (src), ##__VA_ARGS__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  * Multiply by GOLDEN_RATIO_64 = 0x0x61C8864680B583EB using a heavily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)  * optimized shift-and-add sequence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  * Without the final shift, the multiply proper is 19 instructions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  * 10 cycles and uses only 4 temporaries.  Whew!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)  * You are not expected to understand this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) static __always_inline u32 __attribute_const__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) hash_64(u64 a, unsigned int bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	u64 b, c, d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	 * Encourage GCC to move a dynamic shift to %sar early,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	 * thereby freeing up an additional temporary register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	if (!__builtin_constant_p(bits))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		asm("" : "=q" (bits) : "0" (64 - bits));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		bits = 64 - bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	_ASSIGN(b, a*5);	c = a << 13;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	b = (b << 2) + a;	_ASSIGN(d, a << 17);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	a = b + (a << 1);	c += d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	d = a << 10;		_ASSIGN(a, a << 19);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	d = a - d;		_ASSIGN(a, a << 4, "X" (d));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	c += b;			a += b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	d -= c;			c += a << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	a += c << 3;		_ASSIGN(b, b << (7+31), "X" (c), "X" (d));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	a <<= 31;		b += d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	a += b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	return a >> bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) #undef _ASSIGN	/* We're a widely-used header file, so don't litter! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) #endif /* BITS_PER_LONG == 64 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) #endif /* _ASM_HASH_H */