Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) #include <linux/i8253.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) #include <linux/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/clockchips.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <asm/sni.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <asm/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #define SNI_CLOCK_TICK_RATE	3686400
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #define SNI_COUNTER2_DIV	64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) static int a20r_set_periodic(struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) static struct clock_event_device a20r_clockevent_device = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	.name			= "a20r-timer",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	.features		= CLOCK_EVT_FEAT_PERIODIC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	.rating			= 300,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	.irq			= SNI_A20R_IRQ_TIMER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	.set_state_periodic	= a20r_set_periodic,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) static irqreturn_t a20r_interrupt(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	struct clock_event_device *cd = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	cd->event_handler(cd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  * a20r platform uses 2 counters to divide the input frequency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  * Counter 2 output is connected to Counter 0 & 1 input.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) static void __init sni_a20r_timer_setup(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	struct clock_event_device *cd = &a20r_clockevent_device;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	cd->cpumask		= cpumask_of(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	clockevents_register_device(cd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 			IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 		pr_err("Failed to register a20r-timer interrupt\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #define SNI_8254_TICK_RATE	  1193182UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) static __init unsigned long dosample(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	u32 ct0, ct1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	volatile u8 msb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	/* Start the counter. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	outb_p(0x34, 0x43);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	/* Get initial counter invariant */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	ct0 = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	/* Latch and spin until top byte of counter0 is zero */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		outb(0x00, 0x43);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 		(void) inb(0x40);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 		msb = inb(0x40);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		ct1 = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	} while (msb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	/* Stop the counter. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	outb(0x38, 0x43);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	 * Return the difference, this is how far the r4k counter increments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	 * clock (= 1000000 / HZ / 2).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  * Here we need to calibrate the cycle counter to at least be close.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) void __init plat_time_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	unsigned long r4k_ticks[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	unsigned long r4k_tick;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	 * Figure out the r4k offset, the algorithm is very simple and works in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	 * _all_ cases as long as the 8254 counter register itself works ok (as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	 * an interrupt driving timer it does not because of bug, this is why
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	 * we are using the onchip r4k counter/compare register to serve this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	 * purpose, but for r4k_offset calculation it will work ok for us).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	 * There are other very complicated ways of performing this calculation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	 * but this one works just fine so I am not going to futz around. ;-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	printk(KERN_INFO "Calibrating system timer... ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	dosample();	/* Prime cache. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	dosample();	/* Prime cache. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	/* Zero is NOT an option. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		r4k_ticks[0] = dosample();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	} while (!r4k_ticks[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		r4k_ticks[1] = dosample();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	} while (!r4k_ticks[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	if (r4k_ticks[0] != r4k_ticks[1]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 		printk("warning: timer counts differ, retrying... ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		r4k_ticks[2] = dosample();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		if (r4k_ticks[2] == r4k_ticks[0]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		    || r4k_ticks[2] == r4k_ticks[1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 			r4k_tick = r4k_ticks[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 			printk("disagreement, using average... ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 				   + r4k_ticks[2]) / 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		r4k_tick = r4k_ticks[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 		(int) (r4k_tick / (500000 / HZ)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		(int) (r4k_tick % (500000 / HZ)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	mips_hpt_frequency = r4k_tick * HZ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	switch (sni_brd_type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	case SNI_BRD_10:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	case SNI_BRD_10NEW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	case SNI_BRD_TOWER_OASIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	case SNI_BRD_MINITOWER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		sni_a20r_timer_setup();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	setup_pit_timer();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }