Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * This file is subject to the terms and conditions of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * License.  See the file "COPYING" in the main directory of this archive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Time operations for IP22 machines. Original code may come from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Ralf Baechle or David S. Miller (sorry guys, i'm really not sure)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * Copyright (C) 2001 by Ladislav Michl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Copyright (C) 2003, 06 Ralf Baechle (ralf@linux-mips.org)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/bcd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/i8253.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/kernel_stat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/ftrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <asm/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <asm/mipsregs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <asm/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <asm/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <asm/sgialib.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <asm/sgi/ioc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #include <asm/sgi/hpc3.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #include <asm/sgi/ip22.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) static unsigned long dosample(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	u32 ct0, ct1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	u8 msb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	/* Start the counter. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 			 SGINT_TCWORD_MRGEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	sgint->tcnt2 = SGINT_TCSAMP_COUNTER & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	sgint->tcnt2 = SGINT_TCSAMP_COUNTER >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	/* Get initial counter invariant */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	ct0 = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	/* Latch and spin until top byte of counter2 is zero */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 		writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CLAT, &sgint->tcword);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 		(void) readb(&sgint->tcnt2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 		msb = readb(&sgint->tcnt2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 		ct1 = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	} while (msb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	/* Stop the counter. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MSWST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	       &sgint->tcword);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	 * Return the difference, this is how far the r4k counter increments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	 * clock (= 1000000 / HZ / 2).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * Here we need to calibrate the cycle counter to at least be close.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) __init void plat_time_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	unsigned long r4k_ticks[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	unsigned long r4k_tick;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	 * Figure out the r4k offset, the algorithm is very simple and works in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	 * _all_ cases as long as the 8254 counter register itself works ok (as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	 * an interrupt driving timer it does not because of bug, this is why
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	 * we are using the onchip r4k counter/compare register to serve this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	 * purpose, but for r4k_offset calculation it will work ok for us).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	 * There are other very complicated ways of performing this calculation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	 * but this one works just fine so I am not going to futz around. ;-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	printk(KERN_INFO "Calibrating system timer... ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	dosample();	/* Prime cache. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	dosample();	/* Prime cache. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	/* Zero is NOT an option. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 		r4k_ticks[0] = dosample();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	} while (!r4k_ticks[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 		r4k_ticks[1] = dosample();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	} while (!r4k_ticks[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	if (r4k_ticks[0] != r4k_ticks[1]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 		printk("warning: timer counts differ, retrying... ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		r4k_ticks[2] = dosample();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		if (r4k_ticks[2] == r4k_ticks[0]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		    || r4k_ticks[2] == r4k_ticks[1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 			r4k_tick = r4k_ticks[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 			printk("disagreement, using average... ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 				   + r4k_ticks[2]) / 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		r4k_tick = r4k_ticks[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		(int) (r4k_tick / (500000 / HZ)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		(int) (r4k_tick % (500000 / HZ)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	mips_hpt_frequency = r4k_tick * HZ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	if (ip22_is_fullhouse())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 		setup_pit_timer();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /* Generic SGI handler for (spurious) 8254 interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) void __irq_entry indy_8254timer_irq(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	int irq = SGI_8254_0_IRQ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	ULONG cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	char c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	irq_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	kstat_incr_irq_this_cpu(irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	printk(KERN_ALERT "Oops, got 8254 interrupt.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	ArcRead(0, &c, 1, &cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	ArcEnterInteractiveMode();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	irq_exit();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) }