Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005-2009 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/swiotlb.h>
#include <asm/time.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
#include <asm/octeon/pci-octeon.h>
#define USE_OCTEON_INTERNAL_ARBITER
/*
* Octeon's PCI controller uses did=3, subdid=2 for PCI IO
* addresses. Use PCI endian swapping 1 so no address swapping is
* necessary. The Linux io routines will endian swap the data.
*/
#define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
#define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
#define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
u64 octeon_bar1_pci_phys;
/**
* This is the bit decoding used for the Octeon PCI controller addresses
*/
union octeon_pci_address {
<------>uint64_t u64;
<------>struct {
<------><------>uint64_t upper:2;
<------><------>uint64_t reserved:13;
<------><------>uint64_t io:1;
<------><------>uint64_t did:5;
<------><------>uint64_t subdid:3;
<------><------>uint64_t reserved2:4;
<------><------>uint64_t endian_swap:2;
<------><------>uint64_t reserved3:10;
<------><------>uint64_t bus:8;
<------><------>uint64_t dev:5;
<------><------>uint64_t func:3;
<------><------>uint64_t reg:8;
<------>} s;
};
int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
/**
* Map a PCI device to the appropriate interrupt line
*
* @dev: The Linux PCI device structure for the device to map
* @slot: The slot number for this device on __BUS 0__. Linux
* enumerates through all the bridges and figures out the
* slot on Bus 0 where this device eventually hooks to.
* @pin: The PCI interrupt pin read from the device, then swizzled
* as it goes through each bridge.
* Returns Interrupt number for the device
*/
int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
<------>if (octeon_pcibios_map_irq)
<------><------>return octeon_pcibios_map_irq(dev, slot, pin);
<------>else
<------><------>panic("octeon_pcibios_map_irq not set.");
}
/*
* Called to perform platform specific PCI setup
*/
int pcibios_plat_dev_init(struct pci_dev *dev)
{
<------>uint16_t config;
<------>uint32_t dconfig;
<------>int pos;
<------>/*
<------> * Force the Cache line setting to 64 bytes. The standard
<------> * Linux bus scan doesn't seem to set it. Octeon really has
<------> * 128 byte lines, but Intel bridges get really upset if you
<------> * try and set values above 64 bytes. Value is specified in
<------> * 32bit words.
<------> */
<------>pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
<------>/* Set latency timers for all devices */
<------>pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
<------>/* Enable reporting System errors and parity errors on all devices */
<------>/* Enable parity checking and error reporting */
<------>pci_read_config_word(dev, PCI_COMMAND, &config);
<------>config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
<------>pci_write_config_word(dev, PCI_COMMAND, config);
<------>if (dev->subordinate) {
<------><------>/* Set latency timers on sub bridges */
<------><------>pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
<------><------>/* More bridge error detection */
<------><------>pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
<------><------>config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
<------><------>pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
<------>}
<------>/* Enable the PCIe normal error reporting */
<------>config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
<------>config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
<------>config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */
<------>config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */
<------>pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
<------>/* Find the Advanced Error Reporting capability */
<------>pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
<------>if (pos) {
<------><------>/* Clear Uncorrectable Error Status */
<------><------>pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
<------><------><------><------> &dconfig);
<------><------>pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
<------><------><------><------> dconfig);
<------><------>/* Enable reporting of all uncorrectable errors */
<------><------>/* Uncorrectable Error Mask - turned on bits disable errors */
<------><------>pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
<------><------>/*
<------><------> * Leave severity at HW default. This only controls if
<------><------> * errors are reported as uncorrectable or
<------><------> * correctable, not if the error is reported.
<------><------> */
<------><------>/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
<------><------>/* Clear Correctable Error Status */
<------><------>pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
<------><------>pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
<------><------>/* Enable reporting of all correctable errors */
<------><------>/* Correctable Error Mask - turned on bits disable errors */
<------><------>pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
<------><------>/* Advanced Error Capabilities */
<------><------>pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
<------><------>/* ECRC Generation Enable */
<------><------>if (config & PCI_ERR_CAP_ECRC_GENC)
<------><------><------>config |= PCI_ERR_CAP_ECRC_GENE;
<------><------>/* ECRC Check Enable */
<------><------>if (config & PCI_ERR_CAP_ECRC_CHKC)
<------><------><------>config |= PCI_ERR_CAP_ECRC_CHKE;
<------><------>pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
<------><------>/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
<------><------>/* Report all errors to the root complex */
<------><------>pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
<------><------><------><------> PCI_ERR_ROOT_CMD_COR_EN |
<------><------><------><------> PCI_ERR_ROOT_CMD_NONFATAL_EN |
<------><------><------><------> PCI_ERR_ROOT_CMD_FATAL_EN);
<------><------>/* Clear the Root status register */
<------><------>pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
<------><------>pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
<------>}
<------>return 0;
}
/**
* Return the mapping of PCI device number to IRQ line. Each
* character in the return string represents the interrupt
* line for the device at that position. Device 1 maps to the
* first character, etc. The characters A-D are used for PCI
* interrupts.
*
* Returns PCI interrupt mapping
*/
const char *octeon_get_pci_interrupts(void)
{
<------>/*
<------> * Returning an empty string causes the interrupts to be
<------> * routed based on the PCI specification. From the PCI spec:
<------> *
<------> * INTA# of Device Number 0 is connected to IRQW on the system
<------> * board. (Device Number has no significance regarding being
<------> * located on the system board or in a connector.) INTA# of
<------> * Device Number 1 is connected to IRQX on the system
<------> * board. INTA# of Device Number 2 is connected to IRQY on the
<------> * system board. INTA# of Device Number 3 is connected to IRQZ
<------> * on the system board. The table below describes how each
<------> * agent's INTx# lines are connected to the system board
<------> * interrupt lines. The following equation can be used to
<------> * determine to which INTx# signal on the system board a given
<------> * device's INTx# line(s) is connected.
<------> *
<------> * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
<------> * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
<------> * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
<------> * INTD# = 3)
<------> */
<------>if (of_machine_is_compatible("dlink,dsr-500n"))
<------><------>return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
<------>switch (octeon_bootinfo->board_type) {
<------>case CVMX_BOARD_TYPE_NAO38:
<------><------>/* This is really the NAC38 */
<------><------>return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
<------>case CVMX_BOARD_TYPE_EBH3100:
<------>case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
<------>case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
<------><------>return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
<------>case CVMX_BOARD_TYPE_BBGW_REF:
<------><------>return "AABCD";
<------>case CVMX_BOARD_TYPE_CUST_DSR1000N:
<------><------>return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
<------>case CVMX_BOARD_TYPE_THUNDER:
<------>case CVMX_BOARD_TYPE_EBH3000:
<------>default:
<------><------>return "";
<------>}
}
/**
* Map a PCI device to the appropriate interrupt line
*
* @dev: The Linux PCI device structure for the device to map
* @slot: The slot number for this device on __BUS 0__. Linux
* enumerates through all the bridges and figures out the
* slot on Bus 0 where this device eventually hooks to.
* @pin: The PCI interrupt pin read from the device, then swizzled
* as it goes through each bridge.
* Returns Interrupt number for the device
*/
int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
<------><------><------><------> u8 slot, u8 pin)
{
<------>int irq_num;
<------>const char *interrupts;
<------>int dev_num;
<------>/* Get the board specific interrupt mapping */
<------>interrupts = octeon_get_pci_interrupts();
<------>dev_num = dev->devfn >> 3;
<------>if (dev_num < strlen(interrupts))
<------><------>irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
<------><------><------>OCTEON_IRQ_PCI_INT0;
<------>else
<------><------>irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
<------>return irq_num;
}
/*
* Read a value from configuration space
*/
static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
<------><------><------> int reg, int size, u32 *val)
{
<------>union octeon_pci_address pci_addr;
<------>pci_addr.u64 = 0;
<------>pci_addr.s.upper = 2;
<------>pci_addr.s.io = 1;
<------>pci_addr.s.did = 3;
<------>pci_addr.s.subdid = 1;
<------>pci_addr.s.endian_swap = 1;
<------>pci_addr.s.bus = bus->number;
<------>pci_addr.s.dev = devfn >> 3;
<------>pci_addr.s.func = devfn & 0x7;
<------>pci_addr.s.reg = reg;
<------>switch (size) {
<------>case 4:
<------><------>*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
<------><------>return PCIBIOS_SUCCESSFUL;
<------>case 2:
<------><------>*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
<------><------>return PCIBIOS_SUCCESSFUL;
<------>case 1:
<------><------>*val = cvmx_read64_uint8(pci_addr.u64);
<------><------>return PCIBIOS_SUCCESSFUL;
<------>}
<------>return PCIBIOS_FUNC_NOT_SUPPORTED;
}
/*
* Write a value to PCI configuration space
*/
static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
<------><------><------> int reg, int size, u32 val)
{
<------>union octeon_pci_address pci_addr;
<------>pci_addr.u64 = 0;
<------>pci_addr.s.upper = 2;
<------>pci_addr.s.io = 1;
<------>pci_addr.s.did = 3;
<------>pci_addr.s.subdid = 1;
<------>pci_addr.s.endian_swap = 1;
<------>pci_addr.s.bus = bus->number;
<------>pci_addr.s.dev = devfn >> 3;
<------>pci_addr.s.func = devfn & 0x7;
<------>pci_addr.s.reg = reg;
<------>switch (size) {
<------>case 4:
<------><------>cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
<------><------>return PCIBIOS_SUCCESSFUL;
<------>case 2:
<------><------>cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
<------><------>return PCIBIOS_SUCCESSFUL;
<------>case 1:
<------><------>cvmx_write64_uint8(pci_addr.u64, val);
<------><------>return PCIBIOS_SUCCESSFUL;
<------>}
<------>return PCIBIOS_FUNC_NOT_SUPPORTED;
}
static struct pci_ops octeon_pci_ops = {
<------>.read = octeon_read_config,
<------>.write = octeon_write_config,
};
static struct resource octeon_pci_mem_resource = {
<------>.start = 0,
<------>.end = 0,
<------>.name = "Octeon PCI MEM",
<------>.flags = IORESOURCE_MEM,
};
/*
* PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
* bridge
*/
static struct resource octeon_pci_io_resource = {
<------>.start = 0x4000,
<------>.end = OCTEON_PCI_IOSPACE_SIZE - 1,
<------>.name = "Octeon PCI IO",
<------>.flags = IORESOURCE_IO,
};
static struct pci_controller octeon_pci_controller = {
<------>.pci_ops = &octeon_pci_ops,
<------>.mem_resource = &octeon_pci_mem_resource,
<------>.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
<------>.io_resource = &octeon_pci_io_resource,
<------>.io_offset = 0,
<------>.io_map_base = OCTEON_PCI_IOSPACE_BASE,
};
/*
* Low level initialize the Octeon PCI controller
*/
static void octeon_pci_initialize(void)
{
<------>union cvmx_pci_cfg01 cfg01;
<------>union cvmx_npi_ctl_status ctl_status;
<------>union cvmx_pci_ctl_status_2 ctl_status_2;
<------>union cvmx_pci_cfg19 cfg19;
<------>union cvmx_pci_cfg16 cfg16;
<------>union cvmx_pci_cfg22 cfg22;
<------>union cvmx_pci_cfg56 cfg56;
<------>/* Reset the PCI Bus */
<------>cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
<------>cvmx_read_csr(CVMX_CIU_SOFT_PRST);
<------>udelay(2000); /* Hold PCI reset for 2 ms */
<------>ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
<------>ctl_status.s.max_word = 1;
<------>ctl_status.s.timer = 1;
<------>cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
<------>/* Deassert PCI reset and advertize PCX Host Mode Device Capability
<------> (64b) */
<------>cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
<------>cvmx_read_csr(CVMX_CIU_SOFT_PRST);
<------>udelay(2000); /* Wait 2 ms after deasserting PCI reset */
<------>ctl_status_2.u32 = 0;
<------>ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
<------><------><------><------><------> before any PCI reads. */
<------>ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
<------>ctl_status_2.s.bar2_enb = 1;
<------>ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
<------>ctl_status_2.s.bar2_esx = 1;
<------>ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
<------>if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
<------><------>/* BAR1 hole */
<------><------>ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
<------><------>ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
<------><------>ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
<------><------>ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
<------><------>ctl_status_2.s.bb1 = 1; /* BAR1 is big */
<------><------>ctl_status_2.s.bb0 = 1; /* BAR0 is big */
<------>}
<------>octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
<------>udelay(2000); /* Wait 2 ms before doing PCI reads */
<------>ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
<------>pr_notice("PCI Status: %s %s-bit\n",
<------><------> ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
<------><------> ctl_status_2.s.ap_64ad ? "64" : "32");
<------>if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
<------><------>union cvmx_pci_cnt_reg cnt_reg_start;
<------><------>union cvmx_pci_cnt_reg cnt_reg_end;
<------><------>unsigned long cycles, pci_clock;
<------><------>cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
<------><------>cycles = read_c0_cvmcount();
<------><------>udelay(1000);
<------><------>cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
<------><------>cycles = read_c0_cvmcount() - cycles;
<------><------>pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
<------><------><------> (cycles / (mips_hpt_frequency / 1000000));
<------><------>pr_notice("PCI Clock: %lu MHz\n", pci_clock);
<------>}
<------>/*
<------> * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
<------> * in PCI-X mode to allow four outstanding splits. Otherwise,
<------> * should not change from its reset value. Don't write PCI_CFG19
<------> * in PCI mode (0x82000001 reset value), write it to 0x82000004
<------> * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
<------> * MRBCM -> must be one.
<------> */
<------>if (ctl_status_2.s.ap_pcix) {
<------><------>cfg19.u32 = 0;
<------><------>/*
<------><------> * Target Delayed/Split request outstanding maximum
<------><------> * count. [1..31] and 0=32. NOTE: If the user
<------><------> * programs these bits beyond the Designed Maximum
<------><------> * outstanding count, then the designed maximum table
<------><------> * depth will be used instead. No additional
<------><------> * Deferred/Split transactions will be accepted if
<------><------> * this outstanding maximum count is
<------><------> * reached. Furthermore, no additional deferred/split
<------><------> * transactions will be accepted if the I/O delay/ I/O
<------><------> * Split Request outstanding maximum is reached.
<------><------> */
<------><------>cfg19.s.tdomc = 4;
<------><------>/*
<------><------> * Master Deferred Read Request Outstanding Max Count
<------><------> * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
<------><------> * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
<------><------> * 5 2 110 6 3 111 7 3 For example, if these bits are
<------><------> * programmed to 100, the core can support 2 DAC
<------><------> * cycles, 4 SAC cycles or a combination of 1 DAC and
<------><------> * 2 SAC cycles. NOTE: For the PCI-X maximum
<------><------> * outstanding split transactions, refer to
<------><------> * CRE0[22:20].
<------><------> */
<------><------>cfg19.s.mdrrmc = 2;
<------><------>/*
<------><------> * Master Request (Memory Read) Byte Count/Byte Enable
<------><------> * select. 0 = Byte Enables valid. In PCI mode, a
<------><------> * burst transaction cannot be performed using Memory
<------><------> * Read command=4?h6. 1 = DWORD Byte Count valid
<------><------> * (default). In PCI Mode, the memory read byte
<------><------> * enables are automatically generated by the
<------><------> * core. Note: N3 Master Request transaction sizes are
<------><------> * always determined through the
<------><------> * am_attr[<35:32>|<7:0>] field.
<------><------> */
<------><------>cfg19.s.mrbcm = 1;
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
<------>}
<------>cfg01.u32 = 0;
<------>cfg01.s.msae = 1; /* Memory Space Access Enable */
<------>cfg01.s.me = 1; /* Master Enable */
<------>cfg01.s.pee = 1; /* PERR# Enable */
<------>cfg01.s.see = 1; /* System Error Enable */
<------>cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
<------>octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
#ifdef USE_OCTEON_INTERNAL_ARBITER
<------>/*
<------> * When OCTEON is a PCI host, most systems will use OCTEON's
<------> * internal arbiter, so must enable it before any PCI/PCI-X
<------> * traffic can occur.
<------> */
<------>{
<------><------>union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
<------><------>pci_int_arb_cfg.u64 = 0;
<------><------>pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
<------><------>cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
<------>}
#endif /* USE_OCTEON_INTERNAL_ARBITER */
<------>/*
<------> * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
<------> * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
<------> * 1..7.
<------> */
<------>cfg16.u32 = 0;
<------>cfg16.s.mltd = 1; /* Master Latency Timer Disable */
<------>octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
<------>/*
<------> * Should be written to 0x4ff00. MTTV -> must be zero.
<------> * FLUSH -> must be 1. MRV -> should be 0xFF.
<------> */
<------>cfg22.u32 = 0;
<------>/* Master Retry Value [1..255] and 0=infinite */
<------>cfg22.s.mrv = 0xff;
<------>/*
<------> * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
<------> * N3K operation.
<------> */
<------>cfg22.s.flush = 1;
<------>octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
<------>/*
<------> * MOST Indicates the maximum number of outstanding splits (in -1
<------> * notation) when OCTEON is in PCI-X mode. PCI-X performance is
<------> * affected by the MOST selection. Should generally be written
<------> * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
<------> * depending on the desired MOST of 3, 2, 1, or 0, respectively.
<------> */
<------>cfg56.u32 = 0;
<------>cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
<------>cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
<------>cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
<------>cfg56.s.roe = 1; /* Relaxed Ordering Enable */
<------>cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
<------><------><------><------> [0=512B,1=1024B,2=2048B,3=4096B] */
<------>cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
<------><------><------><------> .. 7=32] */
<------>octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
<------>/*
<------> * Affects PCI performance when OCTEON services reads to its
<------> * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
<------> * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
<------> * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
<------> * these values need to be changed so they won't possibly prefetch off
<------> * of the end of memory if PCI is DMAing a buffer at the end of
<------> * memory. Note that these values differ from their reset values.
<------> */
<------>octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
<------>octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
<------>octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
}
/*
* Initialize the Octeon PCI controller
*/
static int __init octeon_pci_setup(void)
{
<------>union cvmx_npi_mem_access_subidx mem_access;
<------>int index;
<------>/* Only these chips have PCI */
<------>if (octeon_has_feature(OCTEON_FEATURE_PCIE))
<------><------>return 0;
<------>if (!octeon_is_pci_host()) {
<------><------>pr_notice("Not in host mode, PCI Controller not initialized\n");
<------><------>return 0;
<------>}
<------>/* Point pcibios_map_irq() to the PCI version of it */
<------>octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
<------>/* Only use the big bars on chips that support it */
<------>if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
<------> OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
<------> OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
<------><------>octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
<------>else
<------><------>octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
<------>/* PCI I/O and PCI MEM values */
<------>set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
<------>ioport_resource.start = 0;
<------>ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
<------>pr_notice("%s Octeon big bar support\n",
<------><------> (octeon_dma_bar_type ==
<------><------> OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
<------>octeon_pci_initialize();
<------>mem_access.u64 = 0;
<------>mem_access.s.esr = 1; /* Endian-Swap on read. */
<------>mem_access.s.esw = 1; /* Endian-Swap on write. */
<------>mem_access.s.nsr = 0; /* No-Snoop on read. */
<------>mem_access.s.nsw = 0; /* No-Snoop on write. */
<------>mem_access.s.ror = 0; /* Relax Read on read. */
<------>mem_access.s.row = 0; /* Relax Order on write. */
<------>mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
<------>cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
<------>/*
<------> * Remap the Octeon BAR 2 above all 32 bit devices
<------> * (0x8000000000ul). This is done here so it is remapped
<------> * before the readl()'s below. We don't want BAR2 overlapping
<------> * with BAR0/BAR1 during these reads.
<------> */
<------>octeon_npi_write32(CVMX_NPI_PCI_CFG08,
<------><------><------> (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
<------>octeon_npi_write32(CVMX_NPI_PCI_CFG09,
<------><------><------> (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
<------>if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
<------><------>/* Remap the Octeon BAR 0 to 0-2GB */
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
<------><------>/*
<------><------> * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
<------><------> * BAR 1 hole).
<------><------> */
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
<------><------>/* BAR1 movable mappings set for identity mapping */
<------><------>octeon_bar1_pci_phys = 0x80000000ull;
<------><------>for (index = 0; index < 32; index++) {
<------><------><------>union cvmx_pci_bar1_indexx bar1_index;
<------><------><------>bar1_index.u32 = 0;
<------><------><------>/* Address bits[35:22] sent to L2C */
<------><------><------>bar1_index.s.addr_idx =
<------><------><------><------>(octeon_bar1_pci_phys >> 22) + index;
<------><------><------>/* Don't put PCI accesses in L2. */
<------><------><------>bar1_index.s.ca = 1;
<------><------><------>/* Endian Swap Mode */
<------><------><------>bar1_index.s.end_swp = 1;
<------><------><------>/* Set '1' when the selected address range is valid. */
<------><------><------>bar1_index.s.addr_v = 1;
<------><------><------>octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
<------><------><------><------><------> bar1_index.u32);
<------><------>}
<------><------>/* Devices go after BAR1 */
<------><------>octeon_pci_mem_resource.start =
<------><------><------>OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
<------><------><------>(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
<------><------>octeon_pci_mem_resource.end =
<------><------><------>octeon_pci_mem_resource.start + (1ul << 30);
<------>} else {
<------><------>/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
<------><------>/* Remap the Octeon BAR 1 to map 0-128MB */
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
<------><------>octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
<------><------>/* BAR1 movable regions contiguous to cover the swiotlb */
<------><------>octeon_bar1_pci_phys =
<------><------><------>virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
<------><------>for (index = 0; index < 32; index++) {
<------><------><------>union cvmx_pci_bar1_indexx bar1_index;
<------><------><------>bar1_index.u32 = 0;
<------><------><------>/* Address bits[35:22] sent to L2C */
<------><------><------>bar1_index.s.addr_idx =
<------><------><------><------>(octeon_bar1_pci_phys >> 22) + index;
<------><------><------>/* Don't put PCI accesses in L2. */
<------><------><------>bar1_index.s.ca = 1;
<------><------><------>/* Endian Swap Mode */
<------><------><------>bar1_index.s.end_swp = 1;
<------><------><------>/* Set '1' when the selected address range is valid. */
<------><------><------>bar1_index.s.addr_v = 1;
<------><------><------>octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
<------><------><------><------><------> bar1_index.u32);
<------><------>}
<------><------>/* Devices go after BAR0 */
<------><------>octeon_pci_mem_resource.start =
<------><------><------>OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
<------><------><------>(4ul << 10);
<------><------>octeon_pci_mem_resource.end =
<------><------><------>octeon_pci_mem_resource.start + (1ul << 30);
<------>}
<------>register_pci_controller(&octeon_pci_controller);
<------>/*
<------> * Clear any errors that might be pending from before the bus
<------> * was setup properly.
<------> */
<------>cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
<------>if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
<------><------><------><------><------><------> -1, NULL, 0)))
<------><------>pr_err("Registration of co_pci_edac failed!\n");
<------>octeon_pci_dma_init();
<------>return 0;
}
arch_initcall(octeon_pci_setup);