Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * This file is subject to the terms and conditions of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * License.  See the file "COPYING" in the main directory of this archive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * A small micro-assembler. It is intentionally kept simple, does only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * support a subset of instructions, and does not try to hide pipeline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * effects like branch delay slots.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * Copyright (C) 2005, 2007  Maciej W. Rozycki
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <asm/inst.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <asm/elf.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <asm/bugs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <asm/uasm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define RS_MASK		0x1f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define RS_SH		21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define RT_MASK		0x1f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define RT_SH		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define SCIMM_MASK	0xfffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define SCIMM_SH	6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) /* This macro sets the non-variable bits of an instruction. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define M(a, b, c, d, e, f)					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	((a) << OP_SH						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	 | (b) << RS_SH						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	 | (c) << RT_SH						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	 | (d) << RD_SH						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	 | (e) << RE_SH						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	 | (f) << FUNC_SH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) /* This macro sets the non-variable bits of an R6 instruction. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define M6(a, b, c, d, e)					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	((a) << OP_SH						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	 | (b) << RS_SH						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	 | (c) << RT_SH						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	 | (d) << SIMM9_SH					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	 | (e) << FUNC_SH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #include "uasm.c"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) static const struct insn insn_table[insn_invalid] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	[insn_addiu]	= {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	[insn_addu]	= {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	[insn_and]	= {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	[insn_andi]	= {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	[insn_bbit0]	= {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	[insn_bbit1]	= {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	[insn_beq]	= {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	[insn_beql]	= {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	[insn_bgez]	= {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	[insn_bgezl]	= {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	[insn_bgtz]	= {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	[insn_blez]	= {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	[insn_bltz]	= {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	[insn_bltzl]	= {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	[insn_bne]	= {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	[insn_break]	= {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #ifndef CONFIG_CPU_MIPSR6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	[insn_cache]	= {M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	[insn_cache]	= {M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	[insn_cfc1]	= {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	[insn_cfcmsa]	= {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	[insn_ctc1]	= {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	[insn_ctcmsa]	= {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	[insn_daddiu]	= {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	[insn_daddu]	= {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	[insn_ddivu]	= {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	[insn_ddivu_r6]	= {M(spec_op, 0, 0, 0, ddivu_ddivu6_op, ddivu_op),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 				RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	[insn_di]	= {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	[insn_dins]	= {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	[insn_dinsm]	= {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	[insn_dinsu]	= {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	[insn_divu]	= {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	[insn_divu_r6]	= {M(spec_op, 0, 0, 0, divu_divu6_op, divu_op),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 				RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	[insn_dmfc0]	= {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	[insn_dmodu]	= {M(spec_op, 0, 0, 0, ddivu_dmodu_op, ddivu_op),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 				RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	[insn_dmtc0]	= {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	[insn_dmultu]	= {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	[insn_dmulu]	= {M(spec_op, 0, 0, 0, dmult_dmul_op, dmultu_op),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 				RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	[insn_drotr]	= {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	[insn_drotr32]	= {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	[insn_dsbh]	= {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	[insn_dshd]	= {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	[insn_dsll]	= {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	[insn_dsll32]	= {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	[insn_dsllv]	= {M(spec_op, 0, 0, 0, 0, dsllv_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	[insn_dsra]	= {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	[insn_dsra32]	= {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	[insn_dsrav]	= {M(spec_op, 0, 0, 0, 0, dsrav_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	[insn_dsrl]	= {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	[insn_dsrl32]	= {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	[insn_dsrlv]	= {M(spec_op, 0, 0, 0, 0, dsrlv_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	[insn_dsubu]	= {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	[insn_eret]	= {M(cop0_op, cop_op, 0, 0, 0, eret_op),  0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	[insn_ext]	= {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	[insn_ins]	= {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	[insn_j]	= {M(j_op, 0, 0, 0, 0, 0),  JIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	[insn_jal]	= {M(jal_op, 0, 0, 0, 0, 0),	JIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	[insn_jalr]	= {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #ifndef CONFIG_CPU_MIPSR6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	[insn_jr]	= {M(spec_op, 0, 0, 0, 0, jr_op),  RS},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	[insn_jr]	= {M(spec_op, 0, 0, 0, 0, jalr_op),  RS},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	[insn_lb]	= {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	[insn_lbu]	= {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	[insn_ld]	= {M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	[insn_lddir]	= {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	[insn_ldpte]	= {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	[insn_ldx]	= {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	[insn_lh]	= {M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	[insn_lhu]	= {M(lhu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #ifndef CONFIG_CPU_MIPSR6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	[insn_ll]	= {M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	[insn_lld]	= {M(lld_op, 0, 0, 0, 0, 0),	RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	[insn_ll]	= {M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	[insn_lld]	= {M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	[insn_lui]	= {M(lui_op, 0, 0, 0, 0, 0),	RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	[insn_lw]	= {M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	[insn_lwu]	= {M(lwu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	[insn_lwx]	= {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	[insn_mfc0]	= {M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	[insn_mfhc0]	= {M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	[insn_mfhi]	= {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	[insn_mflo]	= {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	[insn_modu]	= {M(spec_op, 0, 0, 0, divu_modu_op, divu_op),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 				RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	[insn_movn]	= {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	[insn_movz]	= {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	[insn_mtc0]	= {M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	[insn_mthc0]	= {M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	[insn_mthi]	= {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	[insn_mtlo]	= {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	[insn_mulu]	= {M(spec_op, 0, 0, 0, multu_mulu_op, multu_op),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 				RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) #ifndef CONFIG_CPU_MIPSR6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	[insn_mul]	= {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	[insn_mul]	= {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	[insn_multu]	= {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	[insn_nor]	= {M(spec_op, 0, 0, 0, 0, nor_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	[insn_or]	= {M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	[insn_ori]	= {M(ori_op, 0, 0, 0, 0, 0),	RS | RT | UIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) #ifndef CONFIG_CPU_MIPSR6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	[insn_pref]	= {M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	[insn_pref]	= {M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	[insn_rfe]	= {M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	[insn_rotr]	= {M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	[insn_sb]	= {M(sb_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) #ifndef CONFIG_CPU_MIPSR6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	[insn_sc]	= {M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	[insn_scd]	= {M(scd_op, 0, 0, 0, 0, 0),	RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	[insn_sc]	= {M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	[insn_scd]	= {M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	[insn_sd]	= {M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	[insn_seleqz]	= {M(spec_op, 0, 0, 0, 0, seleqz_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	[insn_selnez]	= {M(spec_op, 0, 0, 0, 0, selnez_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	[insn_sh]	= {M(sh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	[insn_sll]	= {M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	[insn_sllv]	= {M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	[insn_slt]	= {M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	[insn_slti]	= {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	[insn_sltiu]	= {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	[insn_sltu]	= {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	[insn_sra]	= {M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	[insn_srav]	= {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	[insn_srl]	= {M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	[insn_srlv]	= {M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	[insn_subu]	= {M(spec_op, 0, 0, 0, 0, subu_op),	RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	[insn_sw]	= {M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	[insn_sync]	= {M(spec_op, 0, 0, 0, 0, sync_op), RE},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	[insn_syscall]	= {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	[insn_tlbp]	= {M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	[insn_tlbr]	= {M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	[insn_tlbwi]	= {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	[insn_tlbwr]	= {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	[insn_wait]	= {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	[insn_wsbh]	= {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	[insn_xor]	= {M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	[insn_xori]	= {M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	[insn_yield]	= {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) #undef M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) static inline u32 build_bimm(s32 arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	WARN(arg > 0x1ffff || arg < -0x20000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	     KERN_WARNING "Micro-assembler field overflow\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) static inline u32 build_jimm(u32 arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	WARN(arg & ~(JIMM_MASK << 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	     KERN_WARNING "Micro-assembler field overflow\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	return (arg >> 2) & JIMM_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)  * The order of opcode arguments is implicitly left to right,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)  * starting with RS and ending with FUNC or IMM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) static void build_insn(u32 **buf, enum opcode opc, ...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	const struct insn *ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	va_list ap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	u32 op;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	if (opc < 0 || opc >= insn_invalid ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	    (opc == insn_daddiu && r4k_daddiu_bug()) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	    (insn_table[opc].match == 0 && insn_table[opc].fields == 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 		panic("Unsupported Micro-assembler instruction %d", opc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	ip = &insn_table[opc];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	op = ip->match;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	va_start(ap, opc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	if (ip->fields & RS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 		op |= build_rs(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	if (ip->fields & RT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 		op |= build_rt(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	if (ip->fields & RD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		op |= build_rd(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	if (ip->fields & RE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 		op |= build_re(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	if (ip->fields & SIMM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		op |= build_simm(va_arg(ap, s32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	if (ip->fields & UIMM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		op |= build_uimm(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	if (ip->fields & BIMM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 		op |= build_bimm(va_arg(ap, s32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	if (ip->fields & JIMM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		op |= build_jimm(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	if (ip->fields & FUNC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 		op |= build_func(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	if (ip->fields & SET)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 		op |= build_set(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	if (ip->fields & SCIMM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 		op |= build_scimm(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	if (ip->fields & SIMM9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		op |= build_scimm9(va_arg(ap, u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	va_end(ap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	**buf = op;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	(*buf)++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	long laddr = (long)lab->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	long raddr = (long)rel->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	switch (rel->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	case R_MIPS_PC16:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 		*rel->addr |= build_bimm(laddr - (raddr + 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 		panic("Unsupported Micro-assembler relocation %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		      rel->type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) }