Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2)  * This file is subject to the terms and conditions of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * License.  See the file "COPYING" in the main directory of this archive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * KVM/MIPS MMU handling in the KVM module.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * Authors: Sanjay Lal <sanjayl@kymasys.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/highmem.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/kvm_host.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <asm/mmu_context.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <asm/pgalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  * for which pages need to be cached.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #if defined(__PAGETABLE_PMD_FOLDED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #define KVM_MMU_CACHE_MIN_PAGES 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #define KVM_MMU_CACHE_MIN_PAGES 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)  * kvm_pgd_init() - Initialise KVM GPA page directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  * @page:	Pointer to page directory (PGD) for KVM GPA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)  * representing no mappings. This is similar to pgd_init(), however it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)  * initialises all the page directory pointers, not just the ones corresponding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)  * to the userland address space (since it is for the guest physical address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)  * space rather than a virtual address space).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) static void kvm_pgd_init(void *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 	unsigned long *p, *end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 	unsigned long entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #ifdef __PAGETABLE_PMD_FOLDED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 	entry = (unsigned long)invalid_pte_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 	entry = (unsigned long)invalid_pmd_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 	p = (unsigned long *)page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 	end = p + PTRS_PER_PGD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 		p[0] = entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 		p[1] = entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 		p[2] = entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 		p[3] = entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 		p[4] = entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 		p += 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 		p[-3] = entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 		p[-2] = entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 		p[-1] = entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 	} while (p != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73)  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74)  * to host physical page mappings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76)  * Returns:	Pointer to new KVM GPA page directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77)  *		NULL on allocation failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) pgd_t *kvm_pgd_alloc(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 	pgd_t *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 		kvm_pgd_init(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91)  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92)  * @pgd:	Page directory pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93)  * @addr:	Address to index page table using.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94)  * @cache:	MMU page cache to allocate new page tables from, or NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96)  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97)  * address @addr. If page tables don't exist for @addr, they will be created
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98)  * from the MMU cache if @cache is not NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100)  * Returns:	Pointer to pte_t corresponding to @addr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101)  *		NULL if a page table doesn't exist for @addr and !@cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102)  *		NULL if a page table allocation failed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 				unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	p4d_t *p4d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	pud_t *pud;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 	pmd_t *pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 	pgd += pgd_index(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	if (pgd_none(*pgd)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 		/* Not used on MIPS yet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	p4d = p4d_offset(pgd, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	pud = pud_offset(p4d, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 	if (pud_none(*pud)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 		pmd_t *new_pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 		if (!cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 		new_pmd = kvm_mmu_memory_cache_alloc(cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 		pmd_init((unsigned long)new_pmd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 			 (unsigned long)invalid_pte_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 		pud_populate(NULL, pud, new_pmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	pmd = pmd_offset(pud, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	if (pmd_none(*pmd)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 		pte_t *new_pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 		if (!cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 		new_pte = kvm_mmu_memory_cache_alloc(cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 		clear_page(new_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 		pmd_populate_kernel(NULL, pmd, new_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	return pte_offset_kernel(pmd, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) /* Caller must hold kvm->mm_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 				   struct kvm_mmu_memory_cache *cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 				   unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151)  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152)  * Flush a range of guest physical address space from the VM's GPA page tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 				   unsigned long end_gpa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	int i_min = pte_index(start_gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 	int i_max = pte_index(end_gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 	for (i = i_min; i <= i_max; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 		if (!pte_present(pte[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 		set_pte(pte + i, __pte(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	return safe_to_remove;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 				   unsigned long end_gpa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 	pte_t *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	unsigned long end = ~0ul;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	int i_min = pmd_index(start_gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	int i_max = pmd_index(end_gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 		if (!pmd_present(pmd[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 		pte = pte_offset_kernel(pmd + i, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 		if (i == i_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 			end = end_gpa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 			pmd_clear(pmd + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 			pte_free_kernel(NULL, pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 			safe_to_remove = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	return safe_to_remove;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 				   unsigned long end_gpa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 	pmd_t *pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 	unsigned long end = ~0ul;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 	int i_min = pud_index(start_gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	int i_max = pud_index(end_gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 		if (!pud_present(pud[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 		pmd = pmd_offset(pud + i, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 		if (i == i_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 			end = end_gpa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 			pud_clear(pud + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 			pmd_free(NULL, pmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 			safe_to_remove = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	return safe_to_remove;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 				   unsigned long end_gpa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	p4d_t *p4d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	pud_t *pud;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	unsigned long end = ~0ul;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	int i_min = pgd_index(start_gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	int i_max = pgd_index(end_gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 		if (!pgd_present(pgd[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 		p4d = p4d_offset(pgd, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 		pud = pud_offset(p4d + i, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 		if (i == i_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 			end = end_gpa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 			pgd_clear(pgd + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 			pud_free(NULL, pud);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 			safe_to_remove = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	return safe_to_remove;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259)  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260)  * @kvm:	KVM pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261)  * @start_gfn:	Guest frame number of first page in GPA range to flush.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262)  * @end_gfn:	Guest frame number of last page in GPA range to flush.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264)  * Flushes a range of GPA mappings from the GPA page tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266)  * The caller must hold the @kvm->mmu_lock spinlock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268)  * Returns:	Whether its safe to remove the top level page directory because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269)  *		all lower levels have been removed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 				      start_gfn << PAGE_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 				      end_gfn << PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) #define BUILD_PTE_RANGE_OP(name, op)					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 				 unsigned long end)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	int ret = 0;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	int i_min = pte_index(start);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	int i_max = pte_index(end);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 	int i;								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	pte_t old, new;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	for (i = i_min; i <= i_max; ++i) {				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 		if (!pte_present(pte[i]))				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 			continue;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 		old = pte[i];						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 		new = op(old);						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 		if (pte_val(new) == pte_val(old))			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 			continue;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 		set_pte(pte + i, new);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 		ret = 1;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	}								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	return ret;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) }									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) /* returns true if anything was done */					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 				 unsigned long end)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	int ret = 0;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	pte_t *pte;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	unsigned long cur_end = ~0ul;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	int i_min = pmd_index(start);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	int i_max = pmd_index(end);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	int i;								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 		if (!pmd_present(pmd[i]))				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 			continue;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 		pte = pte_offset_kernel(pmd + i, 0);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 		if (i == i_max)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 			cur_end = end;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	}								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	return ret;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) }									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 				 unsigned long end)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	int ret = 0;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	pmd_t *pmd;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	unsigned long cur_end = ~0ul;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	int i_min = pud_index(start);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	int i_max = pud_index(end);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	int i;								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 		if (!pud_present(pud[i]))				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 			continue;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 		pmd = pmd_offset(pud + i, 0);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 		if (i == i_max)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 			cur_end = end;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	}								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 	return ret;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) }									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 				 unsigned long end)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	int ret = 0;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	p4d_t *p4d;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	pud_t *pud;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	unsigned long cur_end = ~0ul;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	int i_min = pgd_index(start);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	int i_max = pgd_index(end);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	int i;								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 		if (!pgd_present(pgd[i]))				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 			continue;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 		p4d = p4d_offset(pgd, 0);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 		pud = pud_offset(p4d + i, 0);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 		if (i == i_max)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 			cur_end = end;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	}								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	return ret;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375)  * kvm_mips_mkclean_gpa_pt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376)  * Mark a range of guest physical address space clean (writes fault) in the VM's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377)  * GPA page table to allow dirty page tracking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383)  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384)  * @kvm:	KVM pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385)  * @start_gfn:	Guest frame number of first page in GPA range to flush.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386)  * @end_gfn:	Guest frame number of last page in GPA range to flush.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388)  * Make a range of GPA mappings clean so that guest writes will fault and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389)  * trigger dirty page logging.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391)  * The caller must hold the @kvm->mmu_lock spinlock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393)  * Returns:	Whether any GPA mappings were modified, which would require
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394)  *		derived mappings (GVA page tables & TLB enties) to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395)  *		invalidated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 				    start_gfn << PAGE_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 				    end_gfn << PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405)  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406)  * @kvm:	The KVM pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407)  * @slot:	The memory slot associated with mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408)  * @gfn_offset:	The gfn offset in memory slot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409)  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410)  *		slot to be write protected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412)  * Walks bits set in mask write protects the associated pte's. Caller must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413)  * acquire @kvm->mmu_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 		struct kvm_memory_slot *slot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		gfn_t gfn_offset, unsigned long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	gfn_t base_gfn = slot->base_gfn + gfn_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	gfn_t start = base_gfn +  __ffs(mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	gfn_t end = base_gfn + __fls(mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	kvm_mips_mkclean_gpa_pt(kvm, start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427)  * kvm_mips_mkold_gpa_pt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428)  * Mark a range of guest physical address space old (all accesses fault) in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429)  * VM's GPA page table to allow detection of commonly used pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) BUILD_PTE_RANGE_OP(mkold, pte_mkold)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 				 gfn_t end_gfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 				  start_gfn << PAGE_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 				  end_gfn << PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) static int handle_hva_to_gpa(struct kvm *kvm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 			     unsigned long start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 			     unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 			     int (*handler)(struct kvm *kvm, gfn_t gfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 					    gpa_t gfn_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 					    struct kvm_memory_slot *memslot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 					    void *data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 			     void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	struct kvm_memslots *slots;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	struct kvm_memory_slot *memslot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	slots = kvm_memslots(kvm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	/* we only care about the pages that the guest sees */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	kvm_for_each_memslot(memslot, slots) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 		unsigned long hva_start, hva_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 		gfn_t gfn, gfn_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 		hva_start = max(start, memslot->userspace_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 		hva_end = min(end, memslot->userspace_addr +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 					(memslot->npages << PAGE_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 		if (hva_start >= hva_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 		gfn = hva_to_gfn_memslot(hva_start, memslot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 		ret |= handler(kvm, gfn, gfn_end, memslot, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 				 struct kvm_memory_slot *memslot, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 			unsigned flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	kvm_mips_callbacks->flush_shadow_all(kvm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 				struct kvm_memory_slot *memslot, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 	gpa_t gpa = gfn << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 	pte_t hva_pte = *(pte_t *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 	pte_t old_pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 	if (!gpa_pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	/* Mapping may need adjusting depending on memslot flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	old_pte = *gpa_pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 		hva_pte = pte_mkclean(hva_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	else if (memslot->flags & KVM_MEM_READONLY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		hva_pte = pte_wrprotect(hva_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	set_pte(gpa_pte, hva_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 	/* Replacing an absent or old page doesn't need flushes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	if (!pte_present(old_pte) || !pte_young(old_pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 	/* Pages swapped, aged, moved, or cleaned require flushes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	return !pte_present(hva_pte) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 	       !pte_young(hva_pte) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 	unsigned long end = hva + PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 		kvm_mips_callbacks->flush_shadow_all(kvm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 			       struct kvm_memory_slot *memslot, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 				    struct kvm_memory_slot *memslot, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	gpa_t gpa = gfn << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	if (!gpa_pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	return pte_young(*gpa_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568)  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569)  * @vcpu:		VCPU pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570)  * @gpa:		Guest physical address of fault.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571)  * @write_fault:	Whether the fault was due to a write.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572)  * @out_entry:		New PTE for @gpa (written on success unless NULL).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573)  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574)  *			NULL).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576)  * Perform fast path GPA fault handling, doing all that can be done without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577)  * calling into KVM. This handles marking old pages young (for idle page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578)  * tracking), and dirtying of clean pages (for dirty page logging).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580)  * Returns:	0 on success, in which case we can update derived mappings and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581)  *		resume guest execution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582)  *		-EFAULT on failure due to absent GPA mapping or write to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583)  *		read-only page, in which case KVM must be consulted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 				   bool write_fault,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 				   pte_t *out_entry, pte_t *out_buddy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	struct kvm *kvm = vcpu->kvm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	gfn_t gfn = gpa >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	pte_t *ptep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	bool pfn_valid = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	spin_lock(&kvm->mmu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	/* Fast path - just check GPA page table for an existing entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	if (!ptep || !pte_present(*ptep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 		ret = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	/* Track access to pages marked old */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	if (!pte_young(*ptep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 		set_pte(ptep, pte_mkyoung(*ptep));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 		pfn = pte_pfn(*ptep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 		pfn_valid = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 		/* call kvm_set_pfn_accessed() after unlock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 	if (write_fault && !pte_dirty(*ptep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 		if (!pte_write(*ptep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 			ret = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		/* Track dirtying of writeable pages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		set_pte(ptep, pte_mkdirty(*ptep));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 		pfn = pte_pfn(*ptep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 		mark_page_dirty(kvm, gfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 		kvm_set_pfn_dirty(pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	if (out_entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 		*out_entry = *ptep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	if (out_buddy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 		*out_buddy = *ptep_buddy(ptep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	spin_unlock(&kvm->mmu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	if (pfn_valid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 		kvm_set_pfn_accessed(pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638)  * kvm_mips_map_page() - Map a guest physical page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639)  * @vcpu:		VCPU pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640)  * @gpa:		Guest physical address of fault.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641)  * @write_fault:	Whether the fault was due to a write.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642)  * @out_entry:		New PTE for @gpa (written on success unless NULL).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643)  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644)  *			NULL).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646)  * Handle GPA faults by creating a new GPA mapping (or updating an existing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647)  * one).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649)  * This takes care of marking pages young or dirty (idle/dirty page tracking),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650)  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651)  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652)  * caller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654)  * Returns:	0 on success, in which case the caller may use the @out_entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655)  *		and @out_buddy PTEs to update derived mappings and resume guest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656)  *		execution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657)  *		-EFAULT if there is no memory region at @gpa or a write was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658)  *		attempted to a read-only memory region. This is usually handled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659)  *		as an MMIO access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 			     bool write_fault,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 			     pte_t *out_entry, pte_t *out_buddy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	struct kvm *kvm = vcpu->kvm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	gfn_t gfn = gpa >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	int srcu_idx, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	kvm_pfn_t pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	pte_t *ptep, entry, old_pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	bool writeable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	unsigned long prot_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	unsigned long mmu_seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	/* Try the fast path to handle old / clean pages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	srcu_idx = srcu_read_lock(&kvm->srcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 				      out_buddy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	if (!err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	/* We need a minimum of cached pages ready for page table creation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	 * Used to check for invalidations in progress, of the pfn that is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	 * returned by pfn_to_pfn_prot below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	mmu_seq = kvm->mmu_notifier_seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	 * risk the page we get a reference to getting unmapped before we have a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 	 * of the pte_unmap_unlock() after the PTE is zapped, and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	 * mmu_notifier_seq is incremented.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	/* Slow path - ask KVM core whether we can access this GPA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	if (is_error_noslot_pfn(pfn)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 		err = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	spin_lock(&kvm->mmu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	/* Check if an invalidation has taken place since we got pfn */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	if (mmu_notifier_retry(kvm, mmu_seq)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 		 * This can happen when mappings are changed asynchronously, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 		 * also synchronously if a COW is triggered by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 		 * gfn_to_pfn_prot().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 		spin_unlock(&kvm->mmu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 		kvm_release_pfn_clean(pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	/* Ensure page tables are allocated */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	/* Set up the PTE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	if (writeable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 		prot_bits |= _PAGE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 		if (write_fault) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 			prot_bits |= __WRITEABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 			mark_page_dirty(kvm, gfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 			kvm_set_pfn_dirty(pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	entry = pfn_pte(pfn, __pgprot(prot_bits));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	/* Write the PTE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	old_pte = *ptep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	set_pte(ptep, entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	if (out_entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 		*out_entry = *ptep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	if (out_buddy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 		*out_buddy = *ptep_buddy(ptep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	spin_unlock(&kvm->mmu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	kvm_release_pfn_clean(pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	kvm_set_pfn_accessed(pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 	srcu_read_unlock(&kvm->srcu, srcu_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 					unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	pgd_t *pgdp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	/* We need a minimum of cached pages ready for page table creation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	ret = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	if (KVM_GUEST_KERNEL_MODE(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 		pgdp = vcpu->arch.guest_kernel_mm.pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 		pgdp = vcpu->arch.guest_user_mm.pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	return kvm_mips_walk_pgd(pgdp, memcache, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 				  bool user)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	pgd_t *pgdp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	pte_t *ptep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	addr &= PAGE_MASK << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	pgdp = vcpu->arch.guest_kernel_mm.pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	if (ptep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		ptep[0] = pfn_pte(0, __pgprot(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 		ptep[1] = pfn_pte(0, __pgprot(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	if (user) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 		pgdp = vcpu->arch.guest_user_mm.pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 		if (ptep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 			ptep[0] = pfn_pte(0, __pgprot(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 			ptep[1] = pfn_pte(0, __pgprot(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805)  * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806)  * Flush a range of guest physical address space from the VM's GPA page tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 				   unsigned long end_gva)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	int i_min = pte_index(start_gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	int i_max = pte_index(end_gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	 * There's no freeing to do, so there's no point clearing individual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	 * entries unless only part of the last level page table needs flushing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	if (safe_to_remove)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	for (i = i_min; i <= i_max; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 		if (!pte_present(pte[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 		set_pte(pte + i, __pte(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 				   unsigned long end_gva)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	pte_t *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	unsigned long end = ~0ul;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	int i_min = pmd_index(start_gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	int i_max = pmd_index(end_gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 		if (!pmd_present(pmd[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		pte = pte_offset_kernel(pmd + i, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 		if (i == i_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 			end = end_gva;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 			pmd_clear(pmd + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 			pte_free_kernel(NULL, pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 			safe_to_remove = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	return safe_to_remove;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 				   unsigned long end_gva)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	pmd_t *pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	unsigned long end = ~0ul;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	int i_min = pud_index(start_gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	int i_max = pud_index(end_gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 		if (!pud_present(pud[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 		pmd = pmd_offset(pud + i, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 		if (i == i_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 			end = end_gva;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 			pud_clear(pud + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 			pmd_free(NULL, pmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 			safe_to_remove = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	return safe_to_remove;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 				   unsigned long end_gva)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	p4d_t *p4d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	pud_t *pud;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	unsigned long end = ~0ul;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 	int i_min = pgd_index(start_gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 	int i_max = pgd_index(end_gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 		if (!pgd_present(pgd[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 		p4d = p4d_offset(pgd, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 		pud = pud_offset(p4d + i, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		if (i == i_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 			end = end_gva;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 			pgd_clear(pgd + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 			pud_free(NULL, pud);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 			safe_to_remove = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	return safe_to_remove;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	if (flags & KMF_GPA) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 		/* all of guest virtual address space could be affected */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		if (flags & KMF_KERN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 			/* useg, kseg0, seg2/3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 			/* useg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 		/* useg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 		/* kseg2/3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 		if (flags & KMF_KERN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	 * Don't leak writeable but clean entries from GPA page tables. We don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	 * want the normal Linux tlbmod handler to handle dirtying when KVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	 * accesses guest memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	if (!pte_dirty(pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 		pte = pte_wrprotect(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	/* Guest EntryLo overrides host EntryLo */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	if (!(entrylo & ENTRYLO_D))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 		pte = pte_mkclean(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) #ifdef CONFIG_KVM_MIPS_VZ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 				      struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 				      bool write_fault)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 	/* Invalidate this entry in the TLB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) /* XXXKYMA: Must be called with interrupts disabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 				    struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 				    bool write_fault)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 	unsigned long gpa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 	pte_t pte_gpa[2], *ptep_gva;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 	int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 		kvm_mips_dump_host_tlbs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	/* Get the GPA page table entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	idx = (badvaddr >> PAGE_SHIFT) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 			      &pte_gpa[!idx]) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	/* Get the GVA page table entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	if (!ptep_gva) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 		kvm_err("No ptep for gva %lx\n", badvaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	/* Copy a pair of entries from GPA page table to GVA page table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	/* Invalidate this entry in the TLB, guest kernel ASID only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 					 struct kvm_mips_tlb *tlb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 					 unsigned long gva,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 					 bool write_fault)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	struct kvm *kvm = vcpu->kvm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	long tlb_lo[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	unsigned int idx = TLB_LO_IDX(*tlb, gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	tlb_lo[0] = tlb->tlb_lo[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	tlb_lo[1] = tlb->tlb_lo[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	 * The commpage address must not be mapped to anything else if the guest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	 * TLB contains entries nearby, or commpage accesses will break.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	/* Get the GPA page table entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 			      write_fault, &pte_gpa[idx], NULL) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	/* And its GVA buddy's GPA page table entry if it also exists */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	if (tlb_lo[!idx] & ENTRYLO_V) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 		spin_lock(&kvm->mmu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 		if (ptep_buddy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 			pte_gpa[!idx] = *ptep_buddy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 		spin_unlock(&kvm->mmu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	/* Get the GVA page table entry pair */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	if (!ptep_gva) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 		kvm_err("No ptep for gva %lx\n", gva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 	/* Copy a pair of entries from GPA page table to GVA page table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	/* Invalidate this entry in the TLB, current guest mode ASID only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 				       struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	kvm_pfn_t pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	pte_t *ptep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 	if (!ptep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 		kvm_err("No ptep for commpage %lx\n", badvaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	/* Also set valid and dirty, so refill handler doesn't have to */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	/* Invalidate this entry in the TLB, guest kernel ASID only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094)  * kvm_mips_migrate_count() - Migrate timer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095)  * @vcpu:	Virtual CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097)  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098)  * if it was running prior to being cancelled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100)  * Must be called when the VCPU is migrated to a different CPU to ensure that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101)  * timer expiry during guest execution interrupts the guest and causes the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102)  * interrupt to be delivered in a timely manner.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 		hrtimer_restart(&vcpu->arch.comparecount_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) /* Restore ASID once we are scheduled back after preemption */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	vcpu->cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	if (vcpu->arch.last_sched_cpu != cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 		 * Migrate the timer interrupt to the current CPU so that it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 		 * always interrupts the guest and synchronously triggers a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 		 * guest timer interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 		kvm_mips_migrate_count(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 	/* restore guest state to registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) /* ASID can change if another task is scheduled during preemption */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	vcpu->arch.last_sched_cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	vcpu->cpu = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 	/* save guest state in registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)  * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157)  * @vcpu:	Virtual CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158)  * @gva:	Guest virtual address to be accessed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159)  * @write:	True if write attempted (must be dirtied and made writable).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161)  * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162)  * dirtying the page if @write so that guest instructions can be modified.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164)  * Returns:	KVM_MIPS_MAPPED on success.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165)  *		KVM_MIPS_GVA if bad guest virtual address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166)  *		KVM_MIPS_GPA if bad guest physical address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167)  *		KVM_MIPS_TLB if guest TLB not present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168)  *		KVM_MIPS_TLBINV if guest TLB present but not valid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169)  *		KVM_MIPS_TLBMOD if guest TLB read only.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 						   unsigned long gva,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 						   bool write)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	struct mips_coproc *cop0 = vcpu->arch.cop0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	struct kvm_mips_tlb *tlb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 			return KVM_MIPS_GPA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 		/* Address should be in the guest TLB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 		if (index < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 			return KVM_MIPS_TLB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 		tlb = &vcpu->arch.guest_tlb[index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 		/* Entry should be valid, and dirty for writes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 		if (!TLB_IS_VALID(*tlb, gva))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 			return KVM_MIPS_TLBINV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 		if (write && !TLB_IS_DIRTY(*tlb, gva))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 			return KVM_MIPS_TLBMOD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 			return KVM_MIPS_GPA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 		return KVM_MIPS_GVA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	return KVM_MIPS_MAPPED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 		 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	kvm_trap_emul_gva_lockless_begin(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	err = get_user(*out, opc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	kvm_trap_emul_gva_lockless_end(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	if (unlikely(err)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 		 * Try to handle the fault, maybe we just raced with a GVA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 		 * invalidation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 					      false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 		if (unlikely(err)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 			kvm_err("%s: illegal address: %p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 				__func__, opc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 			return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 		/* Hopefully it'll work now */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) }